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A Uniqueness Result for QVIs
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The uniqueness of certain sub-optimal controls in the sense of Lions is established by means of an
abstract result for quasi-variational inequalities.

1. Let D be a bounded open subset of RN with the smooth boundary I" and
H! (D) the usual Sobolev space. We consider the second order partial differential
operator A from H'(D) into its dual H'(D) defined by

{Au, w)=([ g a;j(x) D'u D"w+a0(x)uw+§ (a;(x) wDu +b;(x) uD’w)] dx,
D ij=1 i=1 ;

with the coefficients a;;€ L (D ) aj b;e L' (D), ag€ L2 (D) where r=N>2orr>N
=2. Given a mapping M : H! (1")—»H 12(T"), fe I? (D) and ¢>0, we consider also
the control problem

min [|y(@)—My (v) |*dT,

ve L2(Dr

O<gvge
where the state y(v) is given by Ay=f (in the sense of distributions on D) and
dy/dn=vinH ~1/2(I"). Asub-optimal control v* in the sense of J. L. Lions ([5],
Ch.3) is then v*=du/dn, where u is a solution for

1) CAuw—u)+cf (Mu—w)*dl = [ f(w—u)dx
. r D

+cf (Mu—u)*dl' V weH (D).

The problem (1) is a quasi-variational inequality (QVI) in the sense of Tartar
—Joly —Mosco (see e. g. [6] or [10]). The existence of solutions for (1) follows by
our abstract results from [8] [9], provided M has an adequate continuity
property and

) min {o, a} gc? (I'a; I rp) it I b5 1l 7 py)s

2r ¢ p
where :, a, a are such that ||u|lew)_S_cI|u||,,lw, (Sobolev  imbedding)
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T a;(x)¢Ez2aX éZ, a. e in D, V £eRY
ij j

(uniform ellipticity) and ao(x)=a>0 for a. e. xeD.

Remark 1. In [5]-Ch. 3 the solution of (1) is constructed by an iterative
procedure in the particular case f=9),

(Au, wy=[ Vu Vwdx and Mu=(l/meas T) | udr.
D r

Using the fact that in this situation Mu is constant on I, the solution can
eventually be found as a fixed point of a real selection map of real variable (like
for QVIs with implicit obstacle in [1]-Ch. IV §7).

In the sequel we are interested in the uniqueness of the
solution for QVIs of type (1).

2. We state first an abstract criterion that assures that two solutions u,, u, of

a QVI are comparable u, <u,. The framework is that of a vector lattice.

More precisely let us consider La real linear space and P a convex cone

in E such that P n(—P)={0}; P induces an ordering on E by setting v, <v, (for

v,, v,€E) if and only if v,—v, € P. Suppose that for all v;, v,€E there is an
element inf {v,, v,}=inf {v,, v,}€E such that v, <v,=inf {v,, v}=0,

3) v, —inf {v,, v,}€P, v,+inf {0, v,—v,}=inf {v,, v,}.
Denote v+ = —inf { —v, 0}, v~ = —inf {v, 0} and sup {v,, v,} = —inf {—v,, —vz}v.

Theorem 1. Iet A be a linear operator from E to its algebraic dual E', h a real
function on ExE, f a linear functional from E' and assume that

) (Av*, v™)>=0, V v€E,
) {Av, v>20, V veE and {Av, v)=0=v=0.

The solutions u,, u, of the QVI {(Au, w—u)+h(u, w)=f(w—u)+h(u, u),
v weE, verify u,<u, if and only if

(6) h(uy, inf {u,, u})+h(u, sup {uy, u}<h(uy, u))+h(u, u,)
Proof. The necessity is immediate. Conversely, if u,, u, are solutions, then
the QVI for u, and w=u,+inf {0, u,—u,}=inf {u,, u,} gives
{Au,, inf {0, uy—u,}>+h(uy, inf {u;, u,})=f(Gnf {0, u,—u,})+h(u,, u,).

The same QVI written for u, and w=u, —inf {0, u, —u,} = —[—u, +inf {0, —u,
—(—u)}]=—inf {—u,, —u;}=—sup {u,, u,} is

(Auy, —inf {0, uy—u,}>+h(uy, sup {u,, u})= —f(inf {0, “2f“1})+h(“2r us).

We add these two inequalities and we find
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(A(uy—uy), —inf {0, u,—u,}>+h(u,, inf {uy, u,})+h(u, sup {uy, u,}
=h(uy, uy)+h(u, u,). |
Due to (3), one can easily infer that u, —u; =(uy, —u;)* —(u, —u,)". It follows that
CA(uy—uy)t, (uy—uy) >—<CAUy—uy)™, (uy—uy)” >+h(uy, inf {u;, u,})
+h(uy, sup {uy, uy})+h(uy, u))+h(u, u,)

and using (4) one gets

CA(uy—uy)™, (up—uy)">=h(u,, inf {“1: “2})+h(“2» sup {“1: “2})
—h(uy, uy)—h(u, uy);

hence, by (6) we must have {A(u,—u,)”, (u,—u,)">=<0.
Then the positivity property (5) implies (u,—u,)” =0 and finally one has

Uy, —uy=u,—u; +(Uy—u,)” =u,—u,—inf {u,—u,, 0}eP.

Remark 2. Obviously, if the property (6) stands V u,, u, € E then the QVI
has at most one solution.

Remark 3. The assumptions on the order of E are in fact weaker* than
those which characterize the structure of a vector lattice ([2]-Cap. 1. §4). It should
also be emphasized that the uniqueness of the solution follows on the basis of (3)
(4) (5) (6) without assuming any topological structure on E, but (6) is available in
the concrete case from Theorem 2 through an indirect compatibility
between the Banach structure and the lattice structure.

3. We return to the concrete QVI (1) which characterizes suboptimal
controls. Let us state '
Theorem 2. If (2) is valid for the QVI (1), if the mapping M : H'/?(T')—»HY*(') is
locally decreasing i. e.
|for vy, v,e HY?2(T') and To={xeT; v, (x)Sv,(x)}
one has Mv,=Mv, on T,

M

then the QVI (1) admits at most one solution.

Proof. Actually we want to apply Th. 1 (see Remark 2) taking h(u, w)
=c[(Mu—w)* dr.
r

We remind that the natural a.e. order from I? gD)(orL2 (")) induces a vector
sublattice structure on H! (D) (respectively on H'/?(I')), so that (3) stands for
E=H'(D). The convex cone P of the a. e. nonnegative elements of H' (D)
verifies PN(—P)={0} and the differential operator from (1) verifies (4); to check
(5) we use the hypothesis (2);

* The assumptions mean just that P is generating.
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{Av, v>éalf)§(D"v)2 dx+alj;v2 dx—2 (la; e+ 16 1) 1 Do L2 |l v |22
j
2min {«, a} ||vllﬁ‘*c?(Ila,-lluﬂlbjllu) D72 [lvlgt
=[Min {a, a}—ﬂ?(ll a;llr+ 15111 ol o)

In this situation we must also examine the condition (6):
8) [ (Muy—inf {u,, u,})*dT +[ (Mu,—sup {u,, u,}*dl’
r r
<[ (Muy—u,)*dl + [ (Muy—u,)*dl, V uy, u,e H' (D).

r r

Let us prove first that the trace operator from H' (D) onto H 1/2(T) is a lattice
homomorphism ([7], Ch. II 3), that is

(inf {u,, uz})lr=inf {ullr' u, ll_}
(sup {ur, up)l =sup {u ], usl}.

C& (D) being dense in H' (D) one has ¢,—u;, ,—u, for some ¢,, y,eCg (D)
and clearly

(10) (nf {gn VD =inf {@ul, ¥ul} Vn

We can pass to the limit in (10) strongly in I? (I'). Indeed, inf {¢@,, ¥,} is bounded
in H' (D) (b?' |l @, |zt + | ¥, | g1), hence it has a subsequence which converges
weakly in H' (D). Thus in the first member of (10) we have a weak convergence in
H''2(I'), which implies the convergence in I? (I'). In the second member of (10), the
corresponding subsequences of ¢,| , ¥,| converge in I?(I') and since I?>(I') is a
Banach lattice, “inf” is conveniently continuous; thus, for the second part of (10),
we have convergence in I? (I'), too. Hence (9) follows from (10) (note that the proof
for “sup” is similar). -
Next, due to (9) the inequality (8) becomes

f[(va_inf {vlr ”2})++(M02—SUP{vxv v2)*] dr§j [(Mv, —v,)*
r

&)

r
+(Mv,—v,)*] dT’, V v,, v,e HY?().

In the region of I' in which »; <v, the integrands from both members of this
inequality are the same.

The region of T in which v, 2 v,, taking into account the hypothesis (7), can
be divided in six parts, respectiveiy with: Mv, S Mv, <v,<v,, Mv, Sv,=Mv,=Sv,,
v, < Mv, < Mv, <v,, etc. One can elementarily verify that on each of them the first
integrand is less than the integrand from the second member of the inequality.

Remark 4. The special uniqueness results for QVIs with implicit
constraints from [1]-Ch. IV § 1 or [5]-Ch. 8 seem to be useless in this case, the
same appears to be true concerning the uniqueness results from [3, 6] which
assume the monotony and concavity of a selection map.
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