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In this paper we describe a method for an approximation of the strong solution of Ito’stochastic
differential equation. We construct a sequence of processes converging almost surely to the solution of
the equation. Similar method for deterministic ordinary differential equations is considered in [4].

1. Introduction.

It is well known that some classes of stochastic processes can be obtained as
solutions of stochastic differential equations. There is a great number of papers
and books in this field (see e. g. [2], [3]). However, from purely theoretical point of
view, and much more from the point of view of various applications, it is very
important to find suitable method for finding at least of approximate solutions of
the stochastic differential equations (SDE).

In this paper we consider a class of SDE involving stochastic integrals in the
sense of K. Ito. We describe an interative procedure such that a sequence of
stochastic processes will converge with probability I to the strong solution of the
original SDE. In some sense, the idea of this investigation goes back to the paper
of Zuber [4] treating deterministic ordinary differential equations. Some
indications without details were announced recently in [5]. _

Let us introduce some notations. Throughout the paper, (Q, F, P) is a fixed
complete probability space. All random variables and stochastic processes will be
defined on this space.

Let W=(W,, F,), t=0, be a standard Wiener process, where (F,) is a filtration
satisfying the usual conditions. We have given the real-valued finctions a(z, x),
a,(t, x), b(t, x) and b,(t, x), n=1,2,..., defined on [0, T] x R and measurable
with respect to the product og-algebra By 1 x B, where T=const>0, R=(
— o0, o). Following the traditions of the classical theory of SDE (see [1], [3]), we
suppose that each of the functions a, a, b, b, satisfies the global Lipschitz’s
condition in the second argument and when x—oo grows not faster than the
linear function, i. e. for some positive constant L we have
/

(1) la(t, x)—a(t, y)|ISLix—y|, a*(t, x) S (1+x?)

and analogously for the rest functions.
Our main purpose here is to study the SDE

2) X,=r]+j"a(s, X,)ds+j'b(s, X, dW,,
0 o
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where 7 is a random variable not depending on W with E{|n|?}<oo and
o b(-)dW, is the stochastic integral in the sense of Ito (see [2], [3]). Let us note
that the conditions on the drift coefficient a(-) and diffusion coefficient b(-)
guarantee the existence and uniquencess of the strong solution X=(X,, F),
te[0, T], of the SDE (2).

Now we shall define the sequence X" ={X®", te[0,T]}, n=1, 2, ..., of
stochastic processes as follows. Using the pair of functions {a,, b,} and the Wiener
process W, we consider a SDE whose solution will be denoted by X®*1, i, e.

t t
A3) X" V=n+[ a,s, X"*V)ds+ [ b(s, X"+ V)dW,.
0 0

It is quite natural to expect that if the pair of functions {a,, b,} is close in some
sense to {a, b}, then the processes X will tend to X as n—oco. We shall establish
results of this type, but first let introduce the following condition

@) = sup {|a(t, x)—ay(t, x) |+ b(t, X)— bo(t, )| } < co.

n=1 1tx

Obviously, (4) implies that a,(t, x)—af(t, x) and b,(t, x)— b(t, x) as n— co uniformly in
t,x. The condition (4) will be used essentially to prove our main result (see Section
2). But this condition will be modified and weakened in Section 3 in order to cover
other interesting cases.

2. Main result and proof.

Now we shall formulate the main result of this paper.

Theorem. Let the functions a, a,, b, b,, n=1, 2, . . ., be defined as above and the
condition (4) be fulfilled. Then the sequence of processes {X™, n=1, 2, . ..}
converges with probability | to the process X as n— 0. .

Proof. Denote

(5) e, =E{sup[la(t, X{")—a,(t, X{")|*+|b(t, X{")—b,(t, X{™)|*1}.
t
. By the subtraction of the equations (2) and (3) and adding some terms, we have

(6) X,—X&*V={[a(s, X.)—a(s, X®)] ds + | [als, X)—a (s, X)] ds
0 0o
+ [ [ (5, X) — (s, X )] ds+ | [an(s, X)—ay (s, XO* )] ds
) 0o
+[[b(s, X)—b(s, X1 dW,+ [ [b(s, X)—b, (s, X)] dW,
[4) 0

+ [ [ba (s, X®)—b, (s, X )] dW,+ [ [by (s, X&) —b, (s, X0 V)] dW,
0o 0

Now we have to estimate each of these integrals. First, using the Cauchy-Schwartz
inequality and (5), we get
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t t
E{[[a(s, X{")—a,(s, X™M)]ds}2<t[E{|a(s, X!")—a,(s. X™)|*}
0 o :
t
ST[E{supla(s, X")—a,(s, X™)|?}ds< Tz,t.
o t

Applying one of the basic properties of the stochastic integrals (see [1], [2], [3]),
we obtain

E{ j [b(s, X™) b, (s, X)] dW,}? = f E{|b(s, X™)—b,(s, X™)[2 } ds < o,t.

These inequalities and the Lipschitz’s conditions for the functions a, a,, b, b,
imply that

t
E{|X,—X{"*D[*} <2-8-(T+ 1) ? [E{| X;,— X™|*} ds
0

t
+8-(T+ 1) 2 [ E{| X,— X"V |2} ds+8-(T+1) &,t.
o

Denote 8- (T+1)[?=a, 8(T+1)=p. If we apply the well-known Gronwall-
Bellman’s inequality, we come to the estimation

) t
E{| X,—X{""V|?} <2a [ E{| X,— X |*} ds+ Be,t
5 ()

t s
+a [ (20 E{| X,— X{"|?} du+ Be,s] e**~Vds.
0 (4]

Let us determine the upper bound for E{|X,—X{"*?|?}, n=1,2,..., by
induction. For the first approximation we take any random process X" adapted
to (F,) and such that E{sup,| X{"|*} <oo. It is easy to prove that the sequence
E{sup,| X™|?}, n=1,2, ..., and E{sup,|X,|*} are uniformly bounded. Then
sup, E{|X{”|’} <c<oco, where the constant ¢ depends on E{|n|?} and
E {sup,| X!V |?}. Further,

at __ 1|
E(1X,—X{" |2} S Qac+pe) ——,

e —1 e —1

1+ Be,

o o

E{|X,— X®|?} <£2(2ac + Be,) [te* —

Since e*—1>at for each t and o>0, then

e —1

E{| X,— X®|?} <[(oec + Be,) 2at + Pe,] o

Suppose that E{|X,—X{"*"|?} has an upper bound of the type
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2 n—1 n 2 tu—k at _ 1
1) E{|x,—X£"+“|2}<[2ac(———(n°‘j’l)! +BE ek——‘(n“_’k)!]—" .

e —1
= - 2 t y =1, 2, . .
n 1(!1) o n

ol

where P,_, is a polynomial of degree n—1 and we want to determine an upper
bound for E{|X,—X"*?|?}. We have

t —
®) E{|X,—X§"+2’|2}<2cxj'P,,_1(2as)eua L ds+Beys it
o
t s au ___
o[ [20 ] Py Qo) ——du-+ag, 5] € ds
O
! e —1
=2e‘"j'P,,_1(2as)(1—e“")ds+ﬂs,,+,——a—.
0
) I I I A
Since H(j;x e fic—l -e k!+(k—1)!+ e +t+1] andm—i-(k—_l-)—!+ ce. +t

+1—e'<—

& D! for each k=0, 1, . . ., then for the coefficients B,_, of the
polynomial P,,_I('Zat) we obtain the following bound

B,,_k=2e“'i((iai)"k;: (1—e™®)ds
= 2"_: e (fzai)::;! ((: 21:)': N +T_t!+ 1=
((i“i)::;-em;l, k=1, 2, ..., n
From (8) and the last relation it follows that
E{|X,—X"* P2} <[(ac+ le)(Z:;)" +Be, ((2'1“2"1;:
+ ... +Bs,,%+ﬂs,,+l]e—a-‘a:l=P,,(2at)e“—1-

This means that (7) is an upper bound of E {| X,— X"*V|?} for each n=1, 2, .
We need the following inequality for stochastic integrals:

©) E{ sup | X(s. @)dW}s4[E{IX( o)f}d,
0

t:te[0,T] O
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if the last integral is finite (see [1], [2], [3]).
From (6), (7) and (9) we find

T
E{sup| X, —X{"*V?} <8(T+4) L [2 | E{|X,—X™|*} ds
t o

T
+ [ E{|X,—X"*V |2} ds+8T(T+4)e,
0

<¢, P,_,RaT)+c, P,_y(2aT)+c5e,, n=1; 2, . . .,

where ¢y, ¢, and c; are constants. Now we are _interested  if the series
Iy P{sup|X, —X{"*V|=e} is convergent. According to the Chebyshev’s

t
inequality, we have

1

(100 = P{SUPIX.—XS"“’I%G}és—z Z Ef{sup|X,—X{"*V|*}.
n=1 t n=1 t

The condition (4) implies that 2, ¢,<oo. Since

<) o) n—1 o) n—k
> P"_l (2at)= > [2acg2aL+ﬂ > & @__Tl_]
n=1 n=1 k=1

(n—1)! -(n—k)!
=) (2a7v)n—l © © (2aT)n—l
<2ac n§1 (n—1)! +Bn§1 8".n=l (n—1)! =

it is clear that the series in the right side, and hence in the left side of (10), are
convergent. By the Borel-Cantelli’s lemma and the Weierstrass’ uniform
convergence theorem, it follows that the sequence {X™, n=1, 2, ... } almost
surely converges uniformly in ¢, te[0, T], to the random proces X. Thus the
Theorem is proved.

3. Remark

The assertion of the Theorem can be proved under other conditions which in
some sense are weaker than the condition (4). For example, we can suppose that
all the functions a, a,, b, b,, are random functions and to require that conditions
(1) and (4) are fulfilled almost surely. Moreover, condition (4) can be replaced by

1) > E{sup[|a(t. X{")—a,(t. X{")|>+|b(t, X{")—b,(t, X{")|*]1} < o0,
n=1 t

where the process X™ is produced by the pair of functions {a,_, b,_,} and the
Wiener process. :

The Theorem gives us an idea how to construct a sequence of succesive
approximations which almost surely converges to the solution of the SDE (2).
Notice especially that each approximation is an element of the space c [0, T] of
the continuous functions on [0, T]. So we can find an e-approximation of the
solution X ofthe original equation (2), i. e. the random process X™, where n=n(g)
such that
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P{sup | X,— X" |<e}=1.
t

To find an e-approximation of the solution X, we shall construct a sequence
of random processes XV, X . X®™ in the following way. Let X*) be an
arbitrary random process with X{"=# and E {sup | X{!|?} < co. Next, we choose

t

the functions a,(t, x) and b,(t, x) such that condition (1) is satisfied
and such that sup, la(t, x)—ay(t, x)|+|b(t, x)—b,(t, x)|}=c, <oco0. Induc-
tively, if we have X (’"_”, we choose the functions a,_, (t, x) and b, _, (t, x) such
that the condition (1) is satisfied, and such that sup, , {|a(t, x)—a,_,(t, x )|
+|bt, x)—b,-,(tx)|} =c,—,<oo, where c,., is (n—1)-th term of any
convergent series %7, ¢,. Now the process X® s defined as a solution of the
equation

dX{P=a,_,(t, XP)dt+b,_,(t, XM)dW, XP=n.

Analogously to the consideration in [4], it is natural to use the notion Z-
algorithm for this iterative procedure. The sequence of functions {a,(t, x), b, (t, x)},
n=1,2,..., will be called a determined sequence. Obviously, Z-algorithm can be
effectuvely used only if our choice of determined sequence is good enough, i. e. if
SDE (3) can be solved. Also, it is clear that the rate of convergence in the Z-
algorithm depends on the choice of the starting process and determined sequence.
Recall that we can solve explicitly any linear stochastic differential equation (see
[1], [2]). This fact leads to the idea to make a linearization of the functions a(t, x)
and b(t, x), such that the equations (3) should have the form

u(ydX{"*V=[4,(®)+B,(t) X{"* '1dt +[c, () + D, (1) X{"* V]dW, X§*V=n.
Let us describe a simple form of such linearization. Suppose the functions a(t,
x) and b (¢, x) satisfy the condition (1). If {«,(t)}, n=1,2,...,and {B,())},n=1,2, ..

., are sequences of uniformly bounded continuous functions on [0, , then thx
sequence of pairs of functions

{a,(t, x), by (t, X)} ={on (1) (x = X{M) +a(t, X{), B, () (x—XM)+b(t, XM}, n=1,2,.

3

is a determined sequence for the Z-algorithm. Indeed,

Ian(t' x)_an(t' Y)lésuP'“n(t)'|x—Y|’ n=1, 2 ... ’
t

and analogously for b,(t, x). Since
at, XM—a,t, X™=b@t, XM —>b,t, X™=0, n=1, 2, . ..,

the condition (11) holds, but the condition a2(t, x)<I?(1+x?) does not hold.
Because of this fact, we suggest the following procedure. Choose a positive
number M. For the (F)-adapted random process X, which is our first
approximation, let

M { inf{s:| X" >M}
re Tif | X{V| £ M for all se[0, T].
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Then t}’ is a stopping time with respect to (F,). Denote X{!), =X if | XV | <M
and X{"),=M sgn X if | XV |=>M;

al'(t, x)=0,(t) (x—X{)+a(t Xil}),

and
bY (t, x)=p,(t) (x—X")+b(t. X))

Thus we come to the conclusion that the SDE
4 ]
X§2’=n+j' a¥ (s, X;Z’)ds+j b¥ (s, XP)dw,
0 0

has a unique solution on the interval [0, t¥]
Let now

M { inf {s:| X®| > M}
2= Tif | X2 < M for all se[0, 74],

and define the process X%, in the same way as X!).. We can continue this
procedure and obtain a sequence of processes X'7. For a fixed t in [0, T] we can
find a sufficiently large M, such that t¥>¢,n=1, 2, ..., almost surely. Since there
exists a stopping time t™ =inf, 1 (see [3]), then on the interval [0, T™] all
conditions of our Theorem are satisfied and therefore the sequence {X{}, n=1,2,.

. } almost surely converges to the process X as n—o0. Also, on this interval the
relations '

a'(t, X)=a,(t, X{"), by, X::l)M)=bn(t' X", n=1,2 ...,

are valid. Since t™™—T almost surely as M—co (see [2]), we come to the
conclusion that the sequence of random processes {X™, n=1, 2, ... } almost
surely converges to the solution X of the SDE (2) ‘for each te[O T].

In particular, if «, (t)=,(t)=0 for each n=1, 2, . . ., then the Z-algorithm is
reduced to the usual Picard-Lindelof method of succesive approximations.

Finally, let us note that the classical Chaplygin’s method in the theory of the
deterministic differential equations (see [6]) could be extended to stochastic
differential equations using the results of the present paper. However it will be a
subject of a forthcoming paper. Also, we could extend the results of this paper for
SDE involving stochastic integrals with respect to any continuous martingale and
martingale measure.
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