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We study problems for convex and monotone interpolation with minimal L, norm of k-th derivative.
Our approach is based on Lagrange duality theory from optimal control.

1. Introduction

Given points (t;, y), i=1,...,n in R?, 0=t, ... t,<1, define the class of
functions
(1) F={ f, fPeL,©, 1), ft)=y. i=1, . . ., n},

where f® denotes k-th derivative of f, n>k. The problem of best interpolatioh is
) Minimize | f®|, subject to feF.

J. Favard [3] considered this problem for p=c0. C. De Boor [1] extended
Favard’s work to 1<p<oo. For the case k=p=2 U. Hornung added new
constraints for the derivatives; in [5] he treated a monotone best interpolation
problem in which f’>0 and in [6] he solved a convex best interpolation
problem with f”>0. Hornung’s results concerning the convex interpolation
were developed further by G. Ilievand W. Pillul[7], C. A. Micchelliet al.
[9] and A. Dontchev et al. [2] -
For p=k=2 the best interpolation problem can be rewritten as

Minimize [u? subject to: x;=x,, X,=u, x,(t)=y, i=1, ..., n

This problem has a well-known interpretation in optimal control: it describes the
motion of a car with unit mass equipped with two rocket engines one on each end.
The car runs on the level and its position is x; and the velocity is x ,. The
control u represents the force on the car due to firing either engine. The car
should arrive to the station y; at the moment t;. The problem is to minimize the
energy (fuel consumption). Then “monotone interpolation” (x,=0) means that
the car moves in one direction only. In the “convex” case (u=0) there is one
engine only.
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If the costs are connected with the changes of the control (the engines regime)
then the next derivative is to be taken into account. Then u'=w and the
norm ||w||, should be minimal. In terms of the problem (2) we have k=3 and p=2.
’é‘his part3icular problem with monotonicity and convexity constraints is studied in

ection 3.

The rocket car interpretation suggests that optimal control methods can be
used for solving best interpolation problems. We should note that this connection
was not fully exploited in the above mentioned papers.

In the present paper we study constrained best interpolation problems

applying duality methods from optimal control. In Section 2 we consider
problems containing constraints for that derivative only, which norm is
minimized.
An extension of one of the characterization theorems by C. A. Micchelli et
al. [9] is obtained. We study also the continuity properties of the solution with
respect to the data. Section 3 deals with the monotone best interpolation problem
for p=2. We present a short proof of Hornung’s result for k=2 and solve the
problem for k=3.

2. Constrained k-th derivative

It is known that the interpolation conditions in (1) can be equivalently
written as affine constraints for the k—th derivative [f® M;,=d,, j=1,..., N,
where N=n—k, M;, are the appropriately normalized B-splines determined
by t, . . ., tjs, and d; are the divided differences of y; at t;, . . . , t;,;.

Now we introduce the following more general problem. Let T}, i=0, 1, 2, 3 be
disjoint measurable sets in [0, 1], wie T;=[O0, 1] and let a; and b ; be L, functions
on T; and T, respectively. Define

—o0, teTy +o0, teT,

= a,, teT; b= +oo, teT;
—o0, teT, b,, teT,

a, teT; by, teT;

and let C={ueL,(0, 1), asu=b}.

Let 1<p<oo, 1/p+1/g=1, Y,€L,(0, 1), c; be fixed numbers, i=1, ..., m.
Define the set

D={ueL,©0, 1), [Yyu=c, i=1, ..., m}

and let E=CnD.
In this section we consider the problem

3) Minimize ||u|, subject to uekE.
For k=2, T; =[O0, 1], a;=0 and y;=M;, we have the convex best interpol-

ation problem studied by U. Hornung [6]. If a; =0, b,=0 and T;=0 we
come to the problem in [9]. In [2] it is assumed that T;=[0, 1].
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If Y;=M,, then (3) is a best interpolation problem with constrained k-th
derivative. Observe that in the monotone case the derivatives in the constrains
and in the functional are different.

If E# @ then (3) has unique solution. For T, =[0, 1], a; =0 the question
when E 5 Q' is the well-known Markov’s problem of moments for ;. If ;= M, ,,
m= N then E 3 @ when the divided differences d;>0. For k> 2 the set of feasible
d; becomes more sophisticated, see K. Ivanov [8].

In the sequel we assume that:

(4) There exist a set A<[0, 1] of positive measure and a
function @#eE so that a<ii<b almost everywhere on A and

| Z o y;|7=0 implies T «?=0.
i=1 =

. For y;=M;,, T;=[0, 1] and a, =0 the condition (4) will be fulfilled if
d;>0, i=1, . N.
Introduce Lagrange functional

1 m
L(u, B)=;(II uII,,)lv_.‘is:,1 B:(fyiu—cy.
Then the dual problem associated with (3) becomes

5 Maximize & (B)=inf(L(u, B), ueC) subject to feR™

Theorem 1. There exists a solution B=(fB, , . .., B.) of the dual problem (5)
such that the unique solution @ of (3) is given by

a for w<a,
4= w for b=w=a,
b for w>b,

where w=|Zr , By, |9 Lsign (T, Biy).

The proof uses standard techniques from convex analysis and optimal
control and is presented in the Appendix.
Corollary 1. ([9] Proposition 2.1). If T,=[0, 1] and a,;=0 then

a=C"1-1 Biv)s
In thls lcase ﬁ is a solution of the following finite dimensional maximization

problem
1 m m .
Maximize (—aj( T B:y)i + T Bic) subject to f=B, , . . . , Bn)ER™
i=1 i=1

In particular, for the problem of convex interpolation with k=2 and p=2 we
obtain

N N
(6) Maximize (—0.5((Z B;M,,)% + = B;d) subject to feR" .
i=1 i=1
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The dual functional is concave, hence B solves (6) iff it is a solution of the
following system is nonlinear equations

) M s(Bioy My 3+ BiM o+ Bisvy Myyy ) =d,.

G. Iliev and W. Pollul [7] proved convergence of the following iterative
procedure for solving (7)

IMi(BiZi M 2+ Bi M, +BiT i My 5) =d,.

This scheme is exactly the sequential coordinate descent method applied to the
dual problem (6). The duality approach gives a number of possibilities to apply
other unconstrained maximization methods. For example the simple gradient
method will have the following iteration

Bt =Bi— M, Bi- i Mi_y 2+ Bi M2+ By My )4 +d,.

As in [9] one can relax the condition (4) determining the largest measurable
set Qc|[0, 1] for which ueE implies u=a, on T,NQ, u=b, on T,nQ and
u=az=b; on T;NnQ. Then the above consideration will be confined to the
complement of Q.

Our next result is concerned with the sensitivity of the solution.

Theorem 2. Let p=2, the condition (4) holds for some c®=(c%, c3,..., ) and
let 2° be the solution of (3) corresponding to c°. There exists a neighbourhood
N (c® of c° so that (4) holds for every ceN (c°) and if &€ is the solution of (3)
corresponding to c¢ then || a°—a°| =0( c—c°|'/?).

The proof is given in the Appendix.

Remark. For k=2 and 1<p< + oo the superlevel set {feR, € (f)=c} of
the dual functional is compact for any ce(— oo, + o0). This observation gives us
convergence of a large class of nonlinear programming codes. In particular, the
convergence of the sequential coordinate descent method (Jacobi iteration)
follows from F. Vasil’ev [11], p. 331. The gradient method is convergent as well,

moreover, it convergence rate is 0 o) see F. Vasil’ev [11], p. 265.

3. Monotone interpolation

In this section we consider the problem of monotone best interpolation

t)) ~Minimize | f® |, subject to feF and f'=0,
-assuming that the data are strictly monotone, y,> y; . Denoting f® =u, fO=x,
j=1, ..., k—1, then (8) can be rewritten as an optimal control problem
) Minimize ||u|, subject to xj=x, , . . ., X_;=u

(10) [Mj,u=d, j=1, ..., N, x,20 for all te[0, 1].
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It is known, see S. Young [10], that if the data are strictly monotone then
there exists an algebraic polynomial that interpolates (t;, y;) and is monotone on
[0, 1]. Take >0 so small that 2°—1<min;(yi+1—y;) and let P interpolate
(¢, yi—(t;+1)°+1) witch P'=0. Then f(t)=P(¢)+(t+1)’—1 interpolates (¢, y,)
with f"()=4 for all te/0, 1]. In other words, there exist >0 and @=f® that
satisfies (10) and is a continuous function so that if X=(X ,..., Xx-1) corresponds
to # then x , =6 for all te/0,1]. Thus, we can apply the duality theory developed
by W. Hager and S. Mitter in [4]. .

Introduce Lagrange functional

k-2
L(x, u3 p, v, B)=0.5|ul3+] (?(xi"xi+1)Pt+Pk—1(xi—'1—'u))
an i=1 .
N
+jx1dv+jzlﬁj(IMj_,‘u—dj),

where p=(p,, . . , Px—,) and v are functions of bounded variations that are left
continuous on [0, 1], v is nonincreasing v (1)=0, =(B;, - . . , Bx) € R". Denoting
£ (p. v, Bp)=inf(L(x, u; p, v, B), x— absolutely continuous, u€ L, (0, 1)), then the
problem dual to (9) is

(12) Maximize £ (p, v, B)-
The following theorem can be extracted from [4]:

Theorem 3. There exists a solution (p, 9, P) of (12) so that if (%, 4) solves (9), then

a3 051al3=2 0. 9 H=L& @ p. 9. P
" (14) {%,d9=0.

Moreover, p(0)=p (1)=0, p,=9,p,i=2,...,k—1are absolutely continuous on
0, 1] and py=—9, ps= —P2 ... Pk-1= —DPx-2- The unique solution of (9) is given
by ﬂ=ﬁk-x—25“=x Bij.k- :

Integrating by parts in (11) and using (13) and (14), we obtain the following
explicit form of the dual problem :

N N
(15) Maximize (—0.5|r— = B;M; lI3— zlﬁ,d,)
-~ ji=1 ji=

subject to: BeRM, r*~?=(—1)*v, v — nonincreasing,
continuous from the left, v(1)=0.
3.1. Case k=2. We have
(16) a=9—2_, B;M;, 2.
Lemma 1. The function @ is continuous on [0, 1).
For a proof, see Appendix.

Now we are prepared to present a new, shorter proof of Hornung’s
characterization theorem in [5].
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Let *, >0 on some interval A=[0, 1]. Then from (14) ¥ is constant on A,
hence, by (16) @ is piecewise linear and X, is a quadratic spline on A. If ®, (£)=0 at
some isolated point ¢, then since ¥ is continuous at ¢ it will be constant around ¢
and %, will be the same quadratic spline around ¢. If £, is zero on the left or on the
right of g only then o is considered as a new knot. If 5, 6;, ; are two neighbouring
new knots then not more than one old knot t; may be situated between o; and
g;. 1, otherwise the strict monotonicity of y; will be violated. If X, >0 on (¢}, 7;. )
then by the continuity d(c;)=1({)=1(0;,,)=0 for some ¢e(g;, 0;4,) (Jjél has
maximum at £). Since 4 is precewise linear on (g}, 0;,,) at least two fixed knots t;,
t;+ should be between o; and o;, ;. This yields that the number of the intervals
[0}, 6;+1] on which %, =0 does not exceed [n/2]+1.1f £, =0 on [0}, 6, ,] then ¢
is piecewise linear but not constant on [o, 6;.,]. Otherwise since ¥ is continuous
it will have the same value on (t;, 0;, ), where ¢; is the neighbouring from the left
and different knot to o, hence 4 will be zero on [¢;, ;. ,] which contradicts the

definition of o; Denote ¢ = —(Z)., ;M j.2)- Then ¢ is a step function across t;
and if £, is not zero on (6, d;+,) then R{=0"=¢. If £, =0 on (), 0j44) then
=—79>0.

Thus we come to Hornung’s characterization theorem:

Theorem 4 ([5]). The solution of the problem (8) for k=2 is a cubic spline with
defect 1 and additional m (free) knots o; where m=<2 [n/2]+2, so that:

(1) On each interval [t;, t;,,] there are at most two new knots ¢;<o;, , and the
solution f is constant on [0 0;,,];

(ii) Given 0;<0;,, either /=0 on [o;, 0j+1] and then there is at most one
t;e(oj, 0;4,) or 7'>0 on (0), 05+1) and there are at least two knots t;, t;,,€(0},
Giy1);

j+1) . . s
(iii) There exists a step function @, >0 on (o}, 6;.,) where f'=0 and ¢ =
on (o, 0;,,) where f is not constant.

3.2. Case k=3. Consider (9) with k=3. Then from Theorem 3

N
X{=X,;, X;=Uu, 12=13—.Zlﬂij,3, p=—9 p(1)=0
j=
and the dual problem is
N N
amn Maximize (—0.5|p— = B, M; ;13— = B;. d).
i=1 i=1

Lemma 2. Iet £, (6)=0 for some o €(0, 1). Then either @ (c)=0 or there exists
>0 so that ¥ is constant on (6—9J, o+90).
The proof is presented the Appendix.

Theorem 5. The solution f of the problem (8) with k=3 is a 5-th order spline
with defect 2 and additional m (free) knots o; m=2 [n/2]+2 so that:
(i). On each interval [t,, t;, ] there are at most two new knots ;=041 and
=/"=f®=0 on [0}, 0;+1];. /
_(ii) Given o;<0o,;,, either f'=0 on [a;, 6;,,] and then there is at most one
te€loj, 0;,,) or there are at least two t;, t;yy in (0j, 0j44);

’

(iii) f“ may have jumps at new knots only.
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Proof. If X, >0 on some A < [0, 1] then by (14) ¥ is constant and hence 4 is
a quadratic spline and %, is a spline of order 4. If £, =0 on A then 4=0 on A
hence p is a quadratic spline and ¥ is piecewise linear on A. As before, let £, >0 on
(p, 1), ®,(6)=%,(r)=0. If #(c)>0 then from Lemma 2 ¥ is constant around ¢ and
%, will be the same polynomial around o, thus ¢ is not a new knot. The same
conslusion can be obtained for . Then d(c)=14(tr)=0. There exist at least two
additional points ¢,  in (o, t) so that 4({)=d(y)=0. This implies that there are at
least two old knots ¢;, t;,, between ¢ and 7. Hence, between every two new knots
0, 0;+1%, is either identically zero or a spline of 4-th order with at least two knots
t;. V»/e do not know whether 7 is continuous at the new knots, hence %, is not more
than C? function.

If we impose additional conditions for f, f” and f” at t=0 and ¢ =1 the above
characterization will be complete, i.e. the number of conditions will be equal to
the number of the parameters. .

3.3 Convex interpolation. Replacing f' =0 by f” =0 the problem (8) becomes a
best convex interpolation problem with minimal L, norm of the k-th derivative.
For k=2 this problem was solved by U. Hornun g [6], see the previous section.
Now we can characterizé the solution for k=3 and k=4. This follows from the
observation that the convex best interpolation problem can be written as (9) with
M; , replaced by M; ,.,.

Consider the case k=23 assuming that the second divided differences are
strictly positive. By repeating the proof of Theorem 4 taking into account that 4 is
a quadratic spline we get the following result.

Theorem 6. The solution f of the problems for convex interpolation with minimal
L, norm of the 3-rd derivative is a 4-th order spline with defect 1 with fixed knots t;
and additional m free knots ¢; m=2n+2 so that: .
(1) In each interval [t t;, ] there are at most two new knots 6;<ac;,, and f"
=0 on [0} 0;41]; R .
(ii) Given 6;<0;,, either f"=0 on [0, 0;,,] and then there is at most one
t;e(o;, 6;41) or f">0 on (0; 6;,,) and there is at least one t;€(0; 0;.,)

The case k=4 can be solved similarly, on the basis of Theorem 5.

Appendix
Proof of Theorem 1. Denote
Ao -
L,(u, A=—llu "p)p— z l} (j'l’j“—cj),
P Jj=1
where 4,20 and let &, (A)=inf(L,(u. ), ueC). One can casily see that if ueE then
Ao
(A1) ;(Ilullp)’é-‘l’l )
for every A=(Ao, . . » A4,) With 152 0. Using the theorem for separation of convex sets, one can show that

there exists 1 Z".,45>0 such that if @ solves (3) then

A =
(A2) —o(ll ul| )’ SL,(u4) for all ueC.
p
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Thus, by (A1) and (A2) we conclude that 1 solves the problem
Maximize & ; (1) subject to ie R™*!.

Then 4 is the unique solution of the problem

(A3) Minimize | H(u, t) subject to a<u<h,
where ‘

(44) H(u, )=(o/p) lulP—Zj=, L(;(0)u—c)).
We will show that

(AS) H@G(t), )=min(H(u, t), a@®)Su<b())

for a. e. te[0, 1]. Let M be the intersection of the sets of Lebesgue points of H(4(:) . . ) and
;- Suppose that H(z, s)<H(d(s), s) for some seM and ze[a(s).b(s)]. Then
513 H@(@), ndt=H(a(s), s)6+0(5) and [3*5 H(z, t)dt=H(z, t)5+0(9).

Thus, for small §>0 . .

s+ s+

f H@E < | H@@), 1.

s—8 s—=3
The function

z for te[s—4, s+46],
u* ()= .
4 (t) otherwise,

applied to (A3) gives smaller value of the functional than 4, which is a contradiction. Then (AS) holds.
Now we show 4,>0 using the regularity condition (4). Let 2,=0. For ¢>0 denote

d+e| T Ay, sign (= Ay, teA,

(A6) u.={ S =
i otherwise.

For small £>0 one has u,eC. By (A2) 0<— X1, I,(j Y u,—c;), which yields

0 —¢f | = ;g%
A j=1

Then all ; are zero which is a contradiction. Thus, 1,>0. Take B;=1;/2, Then 4(¢) minimizes

1 m
;|“|p— z ﬂj('l’j(l)u_cj)

i=1
over [a(t), b(t)]. The proof is completed. []
Proof of Theorem 2. The operator y =£¢)‘, ey ]w,,,) :L,(A)—R™ is surjective, hence (4) holds
=0,

in N (c®. Let c*—c° and u*.2* correspond to c*, , 1, ... (we use the notation from the proof of
Theorem 1). For small >0 the control u* defined as in (A6) satisfies u* e C. Then, by (A2) for teA

3 3 .
(A7) —|ad*@P=—|u @O —cl T By
P p j=1

Without loss of generality, let Z}‘—»I}’ and X7, I}:l. Clearly, 4* is a bounded sequence in
L, (0, 1). Integrating both sides of (A7) in A and assuming that i5—0, we come to a contradiction.
Thus, liminf Z§>0. Then we can take Bi=21%% and obtain limsup I, 1Bl< + 0.

We have
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(A8) 2@ 1P<12°@) 1" +p ,E B5(c§—c}).
=1
Using the uniform convexity of |u|?, we get

(A9) @' @) IP=|d"®)I1"+p jf—-l B W02t @—cHzIa® @ P +p j?l B} (c§—ch)

FPUEPOP2O= Y0 @ O-1 )+ 0 -1 01 p/2 .
Combining (A8) and (A9) and using the well-known minimum condition for convex functions
(#OP 0= T BY,0) @ 0020,
we get
#O-aOrs2 E BB <)

Using the boundedness of f* in this estimate, we complete the proof. [] -

Proof of Lemma 1. We know that 4 has bounded variation, hence it has right limit at
each te[0, 1]. If %, (t)>0 then 4 is continuous at ¢ since by (14) ¢ is constant around ¢t. Let £, (£)=0.
We will show that 4(t*)=0. On the contrary, suppose that there exists >0 so that 2<O0 on (¢, ¢
+6). Then, since ®,(t+5)=0 we have

t+o
0=2,()=2%,(t+8)— [ 4>0.

{ ]
Thus, 2(¢t*)=0. Similarly, if ®,(¢)=0 then 4(¢t”)=4(t)<0. This means that 2(t*)=24(t). On the
other hand, 4(t*)—4(t)=9(t*)—9(¢)<0. Then 42(t*)=14(t), i. e. 4 is continuous on [0, 1). (]
Proof of Lemma 2. Clearly, if £,(s)=0 then 2(c)=0. Suppose that 2#(c)>0. Then since
the minimum of £, at ¢ is unique in a neigilbourhood of o, g is isolated. If ¢ is continuous at o, then

by (14) ¥ is constant on (6 —J, o+ J) and the proof is completed. Suppose that 9(g)>9(c*). We know
that 9 is constant on (6—d, o) and (¢*, o+46). Take an intgger I>0 and &>0 and let

—(W(@)—9(c*) (t—oc+05)/26°+9(c), te(oc—0, o],
V= P (@)—90(c*)) (6+5—1)/26°+V(c*), te(o, o+6],
v otherwise.
The function ¢ is decreésing and continuous on (6 —4d, o+ ). For every €>0 one can find [ so large
that

e=§ 0-9="] -9

Moreover, p()=p(c—08)+ [,_, ¥ satisfies p(c+8)=p(c+6) and p<p on (6—4&, o+3J). Then, for
o and e sufficiently small “since d4(c)>0 we have

0sa=p— X B;M;;<a on (6—46, 6+9).
Jj=1

We obtain that ¢ and p together with j give greater value of the dual functional in (17). The
obtained contradiction means that ¢ is constant on (6—94, o+4). [J
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