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We prove here that the best quadrature formula in Wi la. b] which uses lower derivatives at a
and b has a smaller error.

1. Introduction

Let A={Ay, ..., A} and ={u,, ..., u,} betwosets of integers, such that
m+n=r, g
0si,<...<i,=r—1, o=y < ... <p,=r—1,

where r is a given natural number.
Denote by Xj,; the class of all quadrature formulas of the form

(1) L: I()~L(f): = £ A, f*@ + X B, f*(b),
' k=1 k=1

b
where I(f): =[f(t)dt and the coefficients A, and B, are free parameters. We shall

consider here these formulas in the class
B(W}): ={feC" " '[a. b], f”—abs.cont. in [a, b, ||f* ||,_q[,,_,,,§l}. 1£g=< 0.

The error R(L) of the quadrature formula (1) in B(W?) is defined as follows:

R(L):= sup |I(f)—L(I
Jé BWH
Definition. The quadrature formula L*€X3; issaidto be the “best™ in i if

R(L*)= inf R(L): =Rj;
Le 21.7‘
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We shall study only the classes X33 for which Rj; <oo.
Given m and n, we say (A, W)=<(4, p), if

(2) A=A i=1, ..., m sy, j=1,..., n

“i == 1%y

Respectively, (Z', i')<(4, ), if at least one of the inequalities (2) is strict.
The main result of this paper is the following:

Theorem. Let (A, )<(4, ). Then Ry ;' < Rii.’

2. Auxiliary results

It is easy to see, that the best quadrature formula in X3 is exact for all
algebraic polynomials of degree r—1 (see f.e. [3]).

There is an important one-to-one correspondence (see [l]) between
quadrature formulas

3) 1)~ £ A, f%@)+ £ B, f*%b)+ = a, fix).
k=1 k=1 k=1

which are exact for all algebraic polynomials of degree r—1 and monosplines of
degree r with knots (x;)}, a<x,; < ... <x,<b. In the case (1) the corresponding
monosplines are simply algebraic polynomials of the form P(t)=(—1t)/r!
+c, "'+ ... +c¢, satisfying the boundary conditions

“ PR bg)=0, ke{O ..... l""l}\;-

Pr-k=D(b)=0, ke{O0,..., r—1}\L.
b
Moreover, R(L)=|{P|, where [f|,:={[|f(z)|Pdt}'”? and p is the conjugate
number to ¢, i.e, 1/p+1/g=1. T~herefore‘,l
1
5 Rz =— i
(5) = g;f};”PIIP.

where 2 75, is the subset of those algebraic polynomials of degree r, which satisfy
(4) and have a leading coefficient equal to 1. )
Next we prove some auxiliary results from which the theorem easily follows.

Lemma 1. Let &, v, i=1, ..., m be integers satisfying the inequalities

vi>v,>... >y, 20, & >...>¢ =0,

(6)

v=2€&, i=1,..., m.

Let D=(d;))p.n where d;j:= vy (v;=1)...0 (v;—=&+1).
Then det D>0.
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Proof We apply induction on m. For m=2 the assertion is evidently true.
Next, we assume that it is true for each k <m. Note that, if there exists an integer /,
2<I=m,such that v;<¢,_,, then d;;=0for i<!/—1, j=/, and thus D is of the form

D" 0
D// DIH ’

where D', D" are of lower dimension. Then det D=det D’ det D" >0 in virtue of
inductional hypothesis.

Now suppose that v,=>¢,_, for all I=2,..., m. We shall prove the statement
for m by induction with respect to the number G of the gaps in the sequence
&y, ..., &, For G=0 the statement is true because the functions t'1 ~m, ..., t*m ™ °m
form an ET-system in (0, c0). Suppose that the assertion is true for G—1 gaps.

: PSS |
Denote D<I,l .p>3 =det (d; ; -1 =1-
.]1 """ .’p vH

By a basic identity for determinants we have
2,...,m—1, m+1 1,...., m 2,500, m
-D =
D(l, “ s o m—l) (l,..., m) D(l ..... m—l)
D L..., m—1, m+1 -D ..., m—1 D 2,..., m+1 '
1..., m ..., m—1 1,..., m

Now we use inductional hypothesis for m—1 dimension and for G—1 gaps,
choosing &,,,, such that &,>¢,.,>¢&.,,, we obtain

. 2,..., m—1, m+1 i = . 2,..., m B
SHER D(l, m—l>—(_l) - SIEn D(l ..... m—l>_ '
1,..., -1, 1 . I..., —1
sign D< " S >= — ™" 17s sign D( " >== ,
1, e, m 1

sign D(Z ..... m+1>=(_1)m_s.
m

1,.... m

Then sign D( )=1, i.e.,, det D>0. The lemma is proved.

1,..., m

Lemma 2. Let &, v, i=1,..., m be as in Lemma 1. Then there exists a unique
polynomial P(t) of the form

(7 P(t)y=t"+a "1+ ... +a,t’m,
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satisfying the conditions P_‘;‘s’(l)=0, i=1,..., m. In addition,

(i) P(t) has no zeros in (0,1),

(ii) sign a,=(—1)* k=1,..., m, and, consequently, sign P(t)=(—1)" in (0,1).
Proof. The existence part and the uniqueness part follow from Lemma 1

and conditions

. viv;=1)-..(v;=&+)a=—r@E—-1)... =+ 1):=—C, i=1,..., m.

ji=1
By Krammer’s formulas a, =(—1)* det A,/det D, k=1,..., m, where A, is obtained
from D, deleting the k-th column and putting (c;,..., ¢,)7 as first. By Lemma 1 det
A, >0. Hence, sign aq,=(—1)%

Since

PP0)=0, je{0,...,r—1}\{vy,..., v}
PIY1)=0, je{y,-... Em)s

the assumption P(t)=0 for some te(0, 1) holds by Rolle’s theorem to the
contradiction 0= P")(x) ! Therefore, P(t)#0 in (0, 1). Then, sign P(t)=sign a,,
=(—1)" in (0, 1).

Lemma 3. Suppose that m, s, (v )", (£ )i ° are integers such that m>s>0 and
r—=1zv,>...v,, 20, r—12¢,>...>¢&,_,20, v,2¢, i=1,..., m—s.
Given 0<x,=... =x,<1, there exists a unique polynomial P(t) of the type (7)
satisfying the conditions

(8) PY)X1)=0, i=1,..., m—s,
which vanishes at (x;); (under the condition that P(x;)=P'(x;)= ... =P%x)=0, if
xi_l <x,-=x,~+1 =...=X;+1 <x,'+1+1).

Proof. Since the incidence matrix E corresponding to our interpolation
problem does not contain supported blocks of one-entries, we need to show only
(according to the Atkinson — Sharma theorem [2]) that E satisfies the Polya
condition: M, =k+ 1, where M, is the number of one-entries in the first k
column of E.

Clearly this holds for k=1,..., s, since P(t) vanishes at (x;)j. Zeros in the first
row of E correspond to v,,..., v;, and units in the last row of E correspond to the

numbers &, _,,..., &;. .
The inequality &, _,<v,,_, shows that the first unit in the last row of E

m-—s=

appears before s+ 1-th zero in the first row of E. Next, it is not difficult to verify
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that the conditions &, Zv;,, i=m—s—1,..., 1, imply M, =Zk+1 for k=s+1,..., r.
The lemma is proved.

Remark 1. It follows from Lemma 3 that the coefficients (a,)] of the
polynomial P(t) are continuous functions of the points (x;)], 0=x; = ... =x,<1.

Remark 2. Clearly the incidence matrix E from Lemma 3 will remain still
poised, if we delete several last columns, if the number of one-entries in the new
matrix is equal to the number of columns of this matrix.

Lemma 4. Let a=0, b=1, m+n=r+s, s>0, and let P(t)eX;; be the
polynomial, which corresponds to the best quadrature formula in X35, Then P(t) has
exactly s zeros in (0, 1) (counting multiplicities).

Proof. According to the conditions (4) the polynomial P(z) is of the type (7)
and satisfies (8), where v;=r—1—4, j=1,...,m; {{,> ... >¢,_}={0...., r—1}\
{r—=1—p; j=1,..., n}. It follows from Lemma 1 that v,=¢&, i=1,..., m—s.

Evidently, P(t) has no more than s zeros in (0, 1). Otherwise, a repeated
application of Rolle’s theorem yields that P"(t) has a zero in (0, 1), that is, a
contradiction.

Suppose now that P(t) has | zeros in (0, 1), I<s.

Case A. s—I1—1 is an even number. Let construct a polynomial g(t)=b,t":
+ ... + b, t"m satisfying (8), which vanishes at (x;)}, and, in addition, has a zero of
multiplicity s—/—1 at some point x,,,€(0, 1), x,, ; #x;, i=1,..., . According to
Remark 2, such a polynomial exists. Moreover, g(t) has no other zeros in (0, 1).
Define

Q.(t): =P()—e q(1),
where ¢ is a real number, such that
e P(t) q(t)=0, |P(t)=|e q(t)] in (O, 1).

Then, |Q,(t)|=|P(t)| in (0, 1). Therefore, | Q.| ,<|l P, On the other hand, by
definition || P || ,=inf {|| Q| ,: Q€% 3} Since Q,€.¢ ;. we get a contradiction.

Case B. s—/—1 is an odd number. As in the previous case we construct a
polynomial
(i) q(t)=b tx+1 + ... + b, _t*= with additional zero at x;,,€(0, 1) of implicity
s—I1—2,if there is a k, I SkS<m—s, such that v, 2¢, >v, =&, >...> &, w1 2¢,,
(i) g(t)=b, th—s+1... +byt, with additional zero at x;,,e(0,1) of multiplicity
s—I1—2 and zero x,_,=1, if there is no such k. ‘

Then, in the same way as in Case A, constructing a polynomial Q,, we get a
contradiction.

Therefore, P(t) has exactly s zeros in (0, 1). The lemma is proved.



8 G. P. Nikolov

3. Proof of the theorem

Let for convenience a=0, b= 1. First, we shall prove the theorem in the case
' =q, and 7 differs from 7 by one element, i.e., 2’ is obtained from Z by replacing
some 4, by a, where 4,_; <a<Ai,. _

Let m+n=r+s. Every polynomial P(1)e 273 is of the form (7) and satisfies
(8), where v;=r—1—4, {é, o> ={0,...,r—=1}\{r—1 —p;, i=1,...n}. We
suppose that & <v,i=1,..., m—s. Otherwise, it follows easily from Lemma I that
# ;35 is an empty set.

The proof goes by induction on s. Suppose that s=0. In this case there exist
unique polynomials Pe#5; and Qe# 3 - Let P(t)=t"+ I a;t*i. Consider the

polynomial q(r)=P(t)—Q(t). Clearly
gO)=c "t 4 oo+ k1 T RO R F L L Gt

where v=r—1—a and (c;)7 are real numbers satisfying

o (vi—=1)-. (j——é,-+1)-cj+v-(v—l)-...-(v—éi+l)c,‘

~ =
Fit

=—ayv (=1 ...-(v,—&i+1) i=1,..., m

By Lemma 1 the determinant of the coefficients of this system is non-zero. As
in Lemma 2, we get

sign ¢;= —sign a,-(—1Y *"'=(=1)Y, j=1.... m.

It follows, on the basis of Remark 2, that g(t) has no zeros in (0, 1). Indeed,
otherwise g(t)=0, and hence, a, =0. But, as we show in Lemma 2, sign a,=(— 1)k
Thus, q(t)#0 in (0, 1). Therefore,

(10) sign P(t)=sign Q(t)=sign [P(t)—Q(1)] E

in (0, 1), which yields | P(t)|>|Q(t)| in (0, 1) and consequently, || Pl,>1Qll,.
which had to be shown. ’

Now, let 0<s<r— 1. Suppose that the theorem is true for each choice of m
and n such that 0<m+n—r<s. With each Pe#;; having s zeros (say
7,<... <1, in (0, 1) we associate the polynomial Qe 4‘, L« »which has the same
zeros (7;)}-

Our next goal is to show that (10) is true in this case. Ewdently, (10) implies
IQll,<IllPll, and thus, the assertion of the theorem.
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We have already proved (10) for s=0. Suppose that (10) holds for each choice
of m and n such that 0Sm+n—r<s. Assume that m+n—r=s. It follows from
Lemma 3 that there exist unique polynomials Pe %5 » and Qe #;;, with given
zeros 1y < ... <7, in (0, 1). Evidently, P(¢) and Q(¢) have no other zeros in (0, 1)
except (t; )‘ Let P(t) be of the form

P@t)=t"+a,t"1+ ... +a,t'm.

Then the polynomial g(t)=P(t)—Q(t) has the form

q([)= 2 C,-tv"+ck.tv+aktv“.
i=1
'i#k

It is seen that a;#0, i=1,..., m (otherwise we will get P"(1)=0 i.e., a
contradiction).

Now, we can show that g(t) has no other zeros in (0, 1) except (7;);. Really, q(r)
satisfies the boundary conditions

q" "= 10)=0, ie{O,..., r—11\{4, a};
(11) q (1) =0, ie{0,....r—1}\i
q(r— A= l)(()) - P(r— A= 1)(0).

If we suppose that g has s+ 1 zeros in (0, 1), then (11) yields (by Rolle’s theorem)
that g(t)=0, which is inconsistent with a, #0.

Now, let 7, tend to 1. Then P and Q will tend uniformly to some polynomials
P, and Q, from £ E and 2 3’ 7, respectively, where L, is obtained by “adding”
the new boundary condition Pu(i) 0 to the boundary conditions of # 3 and
#73' - Clearly, the parameters m and n,, corresponding to 4, A’ and ji, = g, satisfy
the inequality m+n,—r=<s—1 and by the inductive hypothesis

sign Po(t)=sign Qo(t)=sign [Po(t)—Qo(1)] in (0, 1).

The coefficients (a)7, (b)T, (c)T of P, Q and q, respectively, are continuous
functions of (r;)] in0=1,< ... £1,<1. Then, a,, b, ¢,, do not change signs when
T, moves to 1, otherwise they vanish for some t,€[t,_,, 1]. Thus (10) holds.

So we get a polynomial Q € 2 3’7 with a smaller L,-norm than P. Therefore,

(12) 7w <R3
Now the general case follows by finite number of pair-wise comparisons of
type (12). The theorem is proved.
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4. Corollaries

We mention here some consequences of the main result.

Corollary 1. Let 1<q=<o0. The best quadrature formula of the form

n—1

I(f)~ Z Ak j""(a)+ Z Bk S9(b)
has a minimal error R,,, in B(W /) amidst all formulas of the type (1). Moreover,
1
Run=15 mf Il(t— ay "Mt —by Mt +c T L 4y |Pde )P,

Remark 3. In the case m+n=r the classical Tchakalov — Obreshkov
formula is extremal.

Corollary 2. Let (v)7, (£,),, 0<I<m be given integers such that

r=1zv,>...>v,20, r—12¢,>...>¢§=20, v,=¢, i=1,..., L
Let E(v)= inf 1“P“L[Ol] P(t)=t"+a t"1+ ... +a,t*m, P‘ﬂ =0, i=1,..., I}.
Then E(T))=}S'(”v.1,.. ,V,m)  is a decreasing function of v,,..., v,

Note that in the special case /=0 (i.e., there are no boundary conditions on
P(t) at 1) we give an answer to the well-known non-linear problem of G. 'G.
Lorentz about the approximation of ¢” by linear combination of m functions
(m<r) amidst {°,..., "7 '} (see [4]).

The author wishes to express his thanks to B. Bojanov for his constant
attention and aid on the topic.
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