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We prove that the L,-norm of the perfect spline satisfying some zero boundary conditions
B:={fP@)=0, jeJ,, fP0b)=0, jeJ,},
and having a maximal number of fixed zeros in (a, b), is a decreasing function of the order of the

derivatives used in 4. This fact has a nice interpretation in the theory of optimal recovery.

1. Introduction

This paper is concerned with the best approximation of functions f from a
given class W on the basis of some information data T(f). In our study T(f)
consists of point evaluations of f or its derivatives, i. e.,

T(f) ={ll(f) gicie ey IN(.f)}’

where {I,(f)} are fixed functionals of the form [, (f)=1Y (x,).
Any transformation S : RY - L_ [a, b] generates a recovery scheme S for
functions f from W in the following way:

1) S)=SU () ---s I (x), x€[a, b].

The error Rg(f) of the approximation (1) is usually defined as L,-norm of the
difference f—S for some fixed p. Set:

Rs : = sup lf=SULi(N) ».os INUD I

feW
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Next we recall the central notion in the theory of optimal recovery.

Definition. The method S* is said to be best method of recovery in the class W
on the basis of the information T(f) if

Rg.=inf Rg=: R(T).
s

By a comparison theorem we mean a statement of the form: If T, < T, (that
is, if the information T, precedes T,, according to some easily checked natural

criteria), then R(T,)=<R(T,).
Given [a, b] we consider here the class

W=B(W,): ={feW,a, b]: /" .=1},
where
W la, b]: ={f:feC""'[a, b], f" Yabs. cont, [f|,<oc0}.

Our central result is Theorem 2, which shows that the error R (T) of the best
recovery scheme in B(W’,) is a monotone function of the order of the derivatives
at the end-points occurring in the information data T.

2. Preliminaries: perfect splines

We review in this section some basic properties of the well-known
polynomial perfect splines. They proved to be a very useful technique in studying

extremal problems in W' [a, b].
A perfect spline of degree r with knots (&)}, &, < ... <¢&,, is every expression
of the form

()= £ ayt ' e[t +2 T (==& )
k=1

i=1

where a,,..., o, and ¢ are real parameters.
All propositions listed below are slight extensions of known facts (see [2]).

They are proved in more general setting in [1].
Given the points x=(x;)}, a<x,<...<x,<b with multiplicities (v;)],
respectively (1=v;<r), and the set I: =(4, i) of integers
{htrer A} =174 0S4y <...<Ap Sr—1,

{ugseoos }=:0, 0=p,<... <p,, Sr-1,
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we denote by T(X, I; f) the data
(f9a), jei; [Ob), jeR: SOx), i=1...,n, j=0,..., v,—1).

Set N: =v,+ ... +v,+m; +m,.

Theorem A. Given the set (X, I), there exists a unique perfect spline ¢ (%, I; t) of
degree r with no more than N —r knots, such that || ¢ |, =1, (=1)"¢=0, and

(2) T(x, I, ¢)=0.

Moreover, ¢ (X, I; t) has exactly N—r knots and no more zeros than those
prescribed by (2).
The next theorem reveals a beautiful extremal property of the perfect splines.

Theorem B. Let (x, I) be an arbitrary fixed set. Then,
(3) fOI=le(x, I; )] on [a, b]

Sor each function feB(W'",), such that T(x, I, f)=0.

Now denote by R, (T), the L,-error of the best recovery scheme in B(W”,) on
the basis of the information T. Then, one could easily derive from Theorem B (see
[1]) that

4 R(T(K, D)=lle(x I ),

Further we shall frequently refer to (4) in order to present some assertions about
¢ (X, I) as comparison theorems in B(W").

Theorem C. Let ()Y be the knots of ¢ (X, I, t), M: =N —r. Then "V (%,
I; &)+#0 for i=1,..., M.

Proof. The assertion was actually proved in [1]. We sketch here the proof in
order to make the reasoning in the next section clearer.

By Rolle’s theorem, ¢~ V(1) has exactly M + 1 distinct zeros in [a, b]. Denote
them by ()} **. Thus, " "V (t)£0 if t¢{n,,..., Nr+1}. Since (1) changes sign
only at the knots {&;}, it follows again by an extention of Rolle’s theorem that
Ni<&i<ni+y, i=0,..., M. Therefore, &é{n,,..., ny+.}» and consequently,
@D () #0,

3. Main results

The proof of our central theorem relies upon an estimation for the number of
zeros of perfect splines.
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Given a function feC"~ ' [a, b], we denote by Z(f; (a, b)) the number of zeros
of. fin (a, b) counting multiplicities up to order r.

Note here that according to Theorem C, the knots {£;} of the perfect spline
¢ (X, I; t) could not be zeros of ¢ of multiplicity greater than r—1.

We use in this paper the customary notations S*(fy,..., f,) and
S~ (f1s-..» f,,) for the number of weak and, respectively, strong sign changes in the
sequence {f;}T (see [4] for details).

The following estimation could be recognized as Budan-Fourier theorem for
perfect splines.

Theorem 1. Let ¢ be an arbitrary perfect spline of degree r with M knots in
(a, b). Then

)] Z(p; (a, )=SM+S™ (¢(a), ¢'(a)..., 9" (a)
—S*(@(b), @' (b),..., @ (b))

Proof. According to the classical Budan-Fourier theorem for algebraic
polynomials (see for example [4], Theorem 3.9),

6) Z(f; (& PSS (@), f(@s... fO@)=STSB)., S/ (B, ST (B)

for any polynomial f of degree r with non-zero leading coefficient and any finite
interval («, f). '

In order to prove Theorem 1 we need only apply (6) for («, B)=(E;, &iv 1)
i=0, 1,..., M, where &, :=a, &y+,:=b. We get

Z(0; (@ bYS T 65— T 5i45 (@@h-... 9" V@), (—1)™)
i=1

i=1

—S+((P(b)’» (P(’_”(b): l)

where &; is the multiplicity of the zero of ¢ at £; and

50 =ST@EN s @TTVEN (=DM =S (@(E), s 0 TVE) (=M.

Clearly, 6;,—s;<1 and the proof is completed.

We shall write I, <I, to indicate that A" < A2, i’ <ul® for all k, with at
leats one strict inequality, where £, ui’ are the corresponding elements of I,
i=1, 2. '

Now we are prepared to state and prove our main result.
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Theorem 2. Let N+m,+m,>r. Suppose that I,<I,. Then
(7 le(x, I; DIslo(x, I 1)) on [a, b]

with strict inequality on some subinterval.

Proof Set I=((4y,-.., 4m,)s (B1,--.s Hm,)) for simplicity. Let k (O<k<r—1)
be a fixed integer satisfying

A+ l<dyy if k<my, L+1=Zr—1 if k=m,.

Define the set i=((:i,,..., :“t,,,l), (#4155 Hmy)) in the following way:

~ (A
Ai=1 . .
i/.,.+l if i=k.
Evidently, Theorem 2 will follow by pair-wise comparisons if we prove that
(8) lo(x, I BI=le(x, I, )] on [a, b]
with strict inequality on some subinterval.

Our next goal is to prove (8). _
Let us introduce the set I: =(4g, 1), Where Ag=(A1,..., L1, Axs1s--+» Am))s

B=(uy,---, #mz)' . . )
According to Theorem A, there exists a unique perfect spline ¢, (t):

=¢(x, Iy t) of degree r with M —1 knots, such that T(x, Io; ¢¢)=0.
Next we investigate the sign pattern of ¢, ¢@: =¢(x, I; ©) and ¢ :

=@(x, I; )
By Theorem 1,

N=Z(p; (a, )SM+S (p(a),..., ¢ V(a), (=DM
—S*(@(b),..., " V(b), N)EM +r—m; —m,=N.
Then,
S7(p(a),..., " Na),(=1)M)=r—m,, S*(@(b),...," " "A(b),1)=m,.
Therefore

9) @ (a)#0 for j#Ay, ..., Am,
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and these non-zero numbers change sign alternatively.
Similar conclusion holds for ¢, and ¢. Particularly,

(10) ST (@@),..., " (@), (=D)M)=r—m,,
(11 S™(@o(@)..., 9§~ (@), (=" H=r—m,—1.
Now it is easy to see that

sign ¢ (t)=sign @ (t)=sign @,(t) for a<t<x,.

Since the perfect splines ¢, ¢, and ¢ vanish only at %, the relation above holds in

the whole interval (a, b).

Define the function g(t): =(¢@(t)—apy()/(1 —ax), where a: =q@%**(q)
/og*V(a). It follows from (9) and (11) that sign ¢** " (a)= —sign @§* (a) and
therefore «<0. Further, on the basis of Theorem B,

(12) le()]=leo(t)| on [a, b].

Then,

Ed

1+|allqoo(t)—<p(t)l,

g =] )|+

which yelds [@ (1)[=|g(0)I.
Now, using again Theorem B with the fact that g**"(a)=0 (and hence,

T (%, I; 9)=0), we get |g()|=|@(t)|. Thus,

(13) leIZ1e @]
Finally, since ¢ # ¢, the inequality in (12), and consequently in (13) is strict

on some subinterval. The proof is complete. The next assertion follows
immediately from Theorem 2 on the basis of relation (4).

Corollary 1. Suppose that I,<1,. Then,
R, (T)<R,(T,) for 1=p<wx
Rp(Tl)éRp(TZ) _f()r p= 0,

where T,=T(X, 1; °), T,=T(x, I ).
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The polynomial case of Theorem 2 (i. e., when N +m, +m,=r) follows in a
similar way from Budan-Fourier theorem (see [1] for a simple proof). This
particular case was studied first by G. Nikolov [3].
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