Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathematica
‘Balkanica

New Scrics Vol. 2, 1988, Fasc. 1

Acyclicity in 3-Manifolds

v vk
Dusan Repovs

Presented by P. Kenderov

Let K be a continuum in a 3-manifold M. How nice neighborhoods can K
have? For example, if K is cellular in M, then K is the intersection of properly
nested 3-cells, while if it is cell-like then K is the intersection of properly nested
homotopy 3-cells with 1-handles [3; Theorem 3]. We describe below
neighborhoods of almost 1-acyclic (over Z,) continua K.

Theorem 1. Let K be a continuum in the interior of a 3-manifold
M with (possibly empty) boundary. Suppose that K does not separate its
connected neighborhoods and that for every neighborhood U= M of K there exists
a neighborhood V< U of K such that the inclusion-induced homomorphism
H,(V=K; Z,)»H,(U; Z,)istrivial. Then K =%, N, where each N;< int M
is a compact 3-manifold with boundary satisfying the following properties:

(iy for each i, N;, <int N;;

(i) N, is obtained from a compact 3-manifold Q; with a 2-sphere boundary by

adding to 0Q; a finite number of orientable (solid) 1-handles;
(itiy for each i, the inclusion-induced homomorphism

H,(ON i+1; Z,) —H,(N;; Z,) is trivial.

Remark. Theorem 1 was proved for orientable 3-manifolds by
D. R. McMillan, Jr. [5; Theorem 2]. A. H. Wright observed [9; Theorem 2]
that McMillan’s theorem generalizes to nonorientable 3-manifolds, but did not
obtain orientable 1-handles. Neither of the papers [5] and.[9] gave details.

We have decided to present the details in order to explain the specific
situation for non-orientable 3-manifolds. Our proof is modelled after the proof of
[5; Theorem 2] as outlined in the lecture notes of D. McMillan [4] from which
we also quote the following folklore lemmas we shall need at several points.
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Lemma 2. Let K be a compact set in the interior of a 3-manifold M, K# M,
and let N M be a neighborhood of K. Then there exists a compact polyhedron
Uc int N with the following properties: '

(i) each component of U is a 3-manifold with boundary;

(ii)y each closed surface in U—K separates U—K;

(iiiy K< int U.

Let M be a compact 3-manifold with boundary and let F,,..., F,,cdM be its
boundary components. Then we define the total genus of M to be the sum of
the genera of F,(1<i<m) :g(@M)=X";-, g;, g;= genus of F,

Lemma 3. Let M be a compact orientable 3-mamfold with boundary and let
R=Z, or the rationals (p a prime). Let iv : H (0M; R)—H (M; R) be the
mcluswn induced homomorphism. Then, rankg (1m ix)=¢g (OM).

Proof of Theorem 1. First, we shall prove that K=n{2,; N,, where N;
satisfy (i) and (ii). It will follow by hypotheses that we can find a subsequence of
{N,} satisfying (iii). We shall supress the Z, coefficients from the notation.

To prove (i)—(iii) it therefore suffices to show that given a neighborhood
Uc M of K there is a compact 3-manifold neighborhood N < U of K such that N
is obtained from a compact 3-manifold Q with dQ a 2-sphere, by attaching a finite
number of orientable (solid) 1-handles to Q. So let U= M be a neighborhood
of K. We may assume the following about U:

(1) U is a nonorientable connected compact 3-manifold with boundary;

(2) Kcint U;

(3) U—K is orientable and connected;

(4) each closed surface in U—K separates U—K.

The condition (3) follows by [2; Lemma 4.1] since, for sufficiently small U'’s, the
inclusion induces trivial homomorphisms H,(U—K)—H ,(M). The condition
(4) is provided by Lemma 2.

Let noeN be Haken's number of U [l; p. 48]. Using the hypothesis,
we can construct an ordered (ny+2)-tuple Y={V,, V,,..., V, ,,} of compact
3-manifolds with boundary such that: i

(5) Vo=U;

(6) Viyycint V;;

(7) @V is an orientable (possibly disconnected) two-sided closed 2-manifold;

(8) H,(0V i+1)—H (V) is trivial;

(9) Kcint V, ..

(Note that (7) follows by (3) and (4).)

Define the complexity of Y to be the integer c¢(Y)=ZX {2 21 200
(n+1)? g,(n), where g;(n) is the number of components of dV; with genus n.
We shall show that in a finite number of steps we can improve Y, so that it will
still satisfy (5)—(8) (but not necessarily also (9)) and that for some i= 1, 0V, will be

a collection of 2-spheres. We shall achieve this by compressing 0Y = Ul }L,l oV, in
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a careful manner to reduce the complexity ¢(Y ), and then we shall apply Haken’s
Finiteness theorem [1].

The sequence of compressions that accomplish our goal is a sequence of
modifications on Y (D. McMillan [3] calls them “simple moves”) of two types:
if a compression of dV; takes place along a disk contained in V;, we say that we
remove a 1-handle, while if the compressing disk lies outside 17,., we say that we
added a 2-handle. So suppose first that there is a disk Dcint V,, such that
DNdY=0D <oV, for some ie{l,..., no+ 1}, and such that D bounds no disk in
0V, So D either lies outside V; (in int V;_,) orinside V;(in V;—V,,,). In the first
case we add a 2-handle to V; while in the second case we remove a 1 —handle from
V.. Denote the new V; and Y by V; and Y’, respectively. Note that in both cases
we did not change any V, i#j. By [3; Lemma 4], I =c(Y ")<c (¥) so by a finite
number of compressions we get Y* = { V55 V,‘,o+ 1} which cannot be compressed
in such a manner anymore. A routine “trading disks” argument now implies that
each component of dY* which is not a 2-sphere is incompressible. _

We want to verify that Y™ satisfies the conditions (5)—(8). We first note that,
if F is a boundary of a 3-manifold Z, it still bounds after the compression: if we
add a 2-handle, then the new F will bound the manifold Z plus the “half-open”
3-cell attached via the 2-handle, while if we removed a 1-handle from Z, then the
new F will bound the manifold Z minus the “half-open” 3-cell removed via the
1-handle. Therefore, Y* is well-defined.

Next, Y* satisfies (5) and (6) by our construction. To prove (7) we show that a
compression of an orientable boundary of a 3-manifold Z always yields an
orientable boundary: suppose first that Z’=Z +(2-handle) had nonorientable
boundary. Then we could find a simple closed curve J<dZ’ such that J would
reverse the orientation in 6Z’. We could isotope J off the cocore of the 2-handle
and hence off thé entire handle and into dZ, thus showing 0Z to be nonorientable.
Since removing a 1-handle from Z has the same effect on 0Z as adding a 2-handle
to the complementary 3-manifold component bounded by 6Z, the preceding
argument also proves that for Z'=Z — (1-handle), 0Z’ stays orientable. Finally,
the condition (8) follows by [3; Lemma B] because we made the simplifications
V;—V; without disturbing V, i#j.

We now prove that for some ke{1,..., ny+1},0V; is a collection of 2-spheres.
If not, then by Haken’s Finiteness theorem [1] for some 1 Sp<qg=ny+1 there
exist components S, =dV, and S,<=dV; that are topologically parallel and
different from S2. So there is an embedding f:S, x[0,1]-U such that
f(S,x {s})=S, where s=0,1. Let X =f(S , x[0,1]). We may assume that no surface
in (int X)naY”* is parallel to S, in X. By [8; Corollary (3.2)] each incompressible
surface in int X is parallel to S, in X. Therefore, (int X)N@Y* consists entirely
of 2-spheres. Also, X must be irreducible, for if there were a 2-sphere in X which
would not bound a 3-cell in X, then it would be incompressible, hence parallel to
S, #S2. Therefore, X minus the interiors of a finite disjoint collection of 3-cells lies
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in V. Hence, every I-cycle in S, is homologous to a 1-cycle in S, thus it bounds
in V, by (8). Since by Lemma 3, the image of the inclusion-induced
homomorphism H, (@V};)—H, (V) has rank (as a vector space over Z,) equal to
g(@V}) it follows by (7) that S, is a 2-sphere, a contradiction. .

Let V be a 3-manifold among V7 all of whose boundary components are
2-spheres. Clearly, (9) may no longer be true, so we now take care of that. During
the compressions, when we attached a 2-handle, it may have happened that it
passed through the space in U that was previously occupied by a 1-handle, which
was removed at an earlier stage. In such cases, we require that the boundary of the
2-handle be in general position with respect to the boundary of the 1-handle. In
addition, we shall assume that the annulus removed from oV (recall oV is
orientable so it contains no Mobius bands) in the k-th compression be disjoint
from all 1-handles or 2-handles involved in the preceeding k — 1 compressions. So
if we now add to AV all I-handles that were removed from V during the
compressions, we get several 1-handles attached to V. Note that adding of an old
I-handle H to éV may result in many new smaller 1-handles as H may run
through several 2-handles that now occupy portions of its original place. (See
Figure 1.)

Every resulting I-handle is orientable. For suppose, in reattaching the 1-
handles sequentially, we have added a nonorientable 1-handle. Then for every
subsequent reattachement of the remaining 1-handles we have only one isotopy
class of attaching maps [7; Theorem (3.34)] so we end up with a nonorientable
surface. But this is impossible by (3) and (4). We may also assume that for every
resulting I-handle H both ends of H are attached to the same boundary
component, for otherwise we add H to V thus reducing the number of boundary
components of V by one.

The 3-manifold N which we get from V by reattaching all 1-handles may be
disconnected so we keep only the component which contains K. Thus N is
obtained from a compact 3-manifold Q with Q a collection of 2-spheres by
attaching a finite number of orientable 1-handles to 8Q, so that every 1-handle has
both ends on the same component of 8Q. Let pi€X;(i=1; 2) be arbitrary points on
two distinct 2-sphere components £, and X, of Q. Since K doesn’t separate N,
there is a polygonal arc A in N—K joining p, and p,. Suppose that A4 passes
through a 1-handle H. We may assume that AnH is just one arc meeting dQ in
only two points on X,. Then, AnH can be replaced by another polygonal arc
B< N —int H attached to ,. So we may assume that 4 doesn’t pass through any
of the I-handles. Therefore, by drilling tunnels, we can effectively join the
components of ¢Q thus obtaining the desired neighborhood N. (See Figure 2.)

We can describe the structure of the neighborhoods N of K as follows: N=Q
+(1-handles), where Q captures the “nonorientability” of K, while the handles
capture the “pathology” of K. (See Figure 3.)
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Figure 1

Figure 2

Let K be a compact set in the interior of a 3-manifold M. We say that K can
be engulfed in M if the interior of some punctured 3-ball in M contains K. A
sequence | K, of compact 3-manifolds with boundary is a W-sequence if for
every i the following conditions hold:
. (1) K;cint K, ;
(i) the inclusion-induced homomorphism is trivial:

n| (K.-)"nn (K.'+1)~
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Figure- 3

An open 3-manifold M is called a Whitehead manifold if it can be expressed
as M=uZ, K; for some W-sequence of handlebodies [6; p. 313].

An examination of the proofs in a recent paper of D. R. McMillan, Jr. and
T. L. Thickstun [6] shows that the orientability hypothesis can be removed
- from all results in [6] if one uses Theorem 1 in the place of [5; Theorem 2J:

Theorem 4. Let M be a compact 3-manifold (possibly with boundary) and
Kcint M a compact subset. Then K can be engulfed in M if and only if there is an
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open, connected neighborhood U = M of K, such that U embeds in S* and H, (U; Z)
vanishes.

Theorem 5. Let M be a compact 3-manifold (possibly with boundary). Then M
contains no fake 3-cells if and only if each Whitehead manifold that embeds in int M
also embeds in S>.
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