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1. Introduction

Mathematical models which are based on difference equations have many
applications in different branches of science. Very often we are not interested in
exact solutions of an equation, but in their stability. In recent years, numerous
definitions of stability having more quantitative nature than most classical
stability definitions have been presented by various investigators. There are many
methods of examination of the stability of difference equations like the
Lyapunov’s second method, the so-called algebraic inequalities method, the
frequency method. In the last few years,. the theory of multivalued difference
equations has been developed by several authors. The interest in studying the
stability of an equilibrium solution of such equations is due to the fact that it is of
importance in various fields like the optimization theory, the problem of
minimization algorithms, the mathematical economics and the numerical analysis.
In the last discipline multivalued differential equations are derived from a
discretization of multivalued differential equations. But the numerical conver-
gence question of the solutions of the multivalued differential equations is closely
linked to numerical stability, that is, the stability of the corresponding multivalued
difference equations.

The aim of the present paper is to extend part of the results of [1] and [2] to
the case of a multivalued difference equation using the Lyapunov’s second
method. Many stability conditions of multivalued equations are obtained by
weakening assumptions about the Lyapunov function. This paper presents a more
general procedure, which is based on the comparison method. Certain Lyapunov-
type theorems for the singlevalued difference equations [3] and for multivalued
difference equations [5] can be obtained as corollaries.

2. Notations, definitions and hypotheses

Let R* be the Euclidean space with norm |-| and S (p) be the open ball in R*
centred at O with radius p>0. Let comp R* be the family of all compact nonempty
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subsets of RX. If n is any integer, we denote by I, the set {n, n+1,...}. For some p,
O<p<oo, let F:I,xS(p)>comp R* be a given multifunction. For fixed
(ng. Xo)€ 1l x S(p). consider on I, the multivalued difference system

(S) x(n+1)e F(n, x (n)), x(ng)=x,.

By a solution of (S) on I, , we understand a function x: I,,0—>S(p), i.e. a sequence,
satisfying (S) on 1,,0. We denote by x(.; ng, xo) any solution of (S) passing through
(no. xo)€ Iy % S(p). A point x € S(p), such that xe F(n, X) for any ne I,,O, is called an
end-point of (S). Our stability results are based upon the existence of an
appropriate scalar function V: I, x S(p)— R, satisfying V(n, 0)=0 for any nel, . In -
order to measure the growth or decay of such a function along a solution of (S) we
define, for any nel, , xe S(p) and ye F(n, x)nS(p), the following quantities

2.1 A*V(n, x, y)=V(n+1, y)—V(n, x),
A*V(n, x, F)=sup {A*V(n, x, y); yeF(n, x)}.
Let us now consider the scalar difference equation
(E) Ar(n)=w(n, r(n)), r(ng)=ro,

where w : I, x A—»R, ASR, is monotone non-decreasing with respect to r for any
fixed nel,, and such that (E) possesses a solution on I, , for any (ng, ro)elox A
and Ar(n)=r(n+ 1)—r(n). In the sequel, we shall assume that x=0 is an end-point
of (S) and w(n, 0)=0 for any nel,, i.e., (E) has the zero solution. That solution of
(E) passing through (ng, ro)elox A will be denoted by r(.; no, ro)-

The following definitions concern the stability of the end-point 0 of (S).

Definition A. a). The end-point 0 of (S) is stable if for any €>0 and nyel,
there exists of d=0(ngy, £)>0 such that |xo| <& implies |x(n; no, xo)|<é¢ for any
solution x(.; ng. Xo) through (ng, x) and all nel, ;

b). the end-point 0 of (S)is uniformly stable if it is stable and, in addition,
d=0(¢e) .

c). the end-point 0 of (S) is asymptotically stable ifit is stable and if, in
addition, there exists a 8o=20o(ng) for any ngel,, such that |xo|<d, implies

lim | x(n; ng, Xo)|=0 for any solution x(.; ne. Xxo) of (S);
ud). the end-point 0 of (S) is uniformly asymptotically stable ifit is
uniformly stable, and if, in addition, for any £>0 there exist a o>0 and an l(e)eI,,
such that | x| <&, implies | x(n; no, xo)| <€ for any solution x(.; no, xo) and for all
nel, e
o
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Remark2.1.If each time there exists only a solution x(.; n¢, X,) from those
passing through (n,, X,), such that one of the above stability definitions holds, we
say that it is a matter of the weak stability. Clearly, any type of stability
implies the corresponding type of weak stability. This notion of weak stability is
pertinent because of non-uniqueness of solutions in the case of multivalued
equations. ’

The results we shall give in the next section are closely linked to certain kinds
of stability for the comparison equation (E).

Definition B. a). The zero solution of (E) is upper semistable if for any
e>0 and nyel, there exists a 5=0(ny, €), such that roe A, ro<d implies
r(n; ny, ro)<e for all nel, ;

b). the zero solution of (E) is uniformly upper semistable if it is
semistable and if, in addition, 6=4(g);

c). the zero solution of (E) is asymptotically upper semistable ifitis
upper semistable and if, in addition, there exists a 8,=200(no) for any no€l,, such
that roe A, ro<d, implies lim r(n; ng, ro)=0;

d). the zero solution of (E) is uniformly asymptotically upper
semistable ifit is uniformly upper semistable and if, in addition, for any ¢ >0 there
exist a ,>0 and an l(g)€ I, such that ro€ A, ro<d, implies r(n; ng, ro) <t for all
nel, i

n the next section the function V(n, x) will satisfy by turns some among the
following hypotheses:

(H1). for every n,el, and any >0, there exists a §=3J(ng, 7)>0, such that
for any x,eS(p), |xo|<d implies V(ny, xo)<n;

(H1"). for any n>0 there exists a =4(7)>0, such that for any nyel, and
Xo€S(p), |xo|<d implies V(ng, xo)<n;

(H2). for any noely, nel, and xeS(p) there exists a scalar continuous
function t—a(tf) non-decreasing for t>0 and a(0)=0 (function of class
such that

(2.2) a(| x]))£ V(n, x), for all (n, x)eI,,oxS(p);

(H3). for all (n, x)el,x S(p)

2.3) A*V(n, x, F)Sw(n, V(n, x)),

(H3"). for all (n, x)el,x S(p) there exists a Vnx€F(n, x)nS(p), such that

(2.3) A*¥V(n, x, y,)=Son, V(n, x).

Remark 22. Hypotheses (H1) and (H1’) represent in fact the upper
semicontinuity of V(n. X) in (n,. 0) simple or, respectively, uniform with respect
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to n,. We note that they are weaker than the frequently used hypothesis.

(H4). for any noelq, nel, and x e S(p) there exists a function t—b(t) of class
o, such that

(2.4) V(n, x)<b(] x|), for all (n, x)eI,,OxS(p).

2.3. The given definitions and the properties of V(n, x) are quite general. No
assumption regarding uniqueness of solutions of (S) or the continuity of V
are made.

3. Main results

In this section we give some general results concerning the stability of the
end-point 0 of (S) connected with the upper semistability of the zero solu-
tion of (E).

Theorem 3.1. Assume that there exists a function V(n, x) satisfying (H2) and
(H3). Then the following assertions hold.

1). If V(n, x) satisfies (H1) and the zero solution of (E) is upper semistable, the
end-point O of (S) is stable; ’

2). If V(n, x) satisfies (H1) and the zero solution of (E) is asymptotically upper
semistable, the end-point O of (S) is asymptotically stable;

3). If V(n, x) satisfies (H1') and the zero solution of (E) is uniformly upper
semistable, the end-point O of (S) is uniformly stable; :

4). If V(n, x) satisfies (H1') and the zero solution of (E) is uniformly-
asymptotically upper semistable, the end-point O of (S) is uniformly-asymptotically
stable.

Proof. Let x=x(.; ny X,) be a solution of (S) through (n,, xo), i.e,
y=x(n+1; ny xo)eF(n, x(n; ng, xo)NS(p). Then, in view of (H3) we get

AV(n, x(n; ng xo)=Vn+1, x(n+1; ng, x0))—V(n, x(n; no, Xo))
=V(n+1, y)—WV(n, x)=A*V(n, x, y)SA*V(n, x, F)=A*V(n, x(n; ng, Xo), F)
<w(n, V(n, x(n; ng, Xg))

According to Lemma 1 [4], [6] on difference inequalities, it follows:

(3.1) V(n, x(n; ng, xo)<r(n; ng, re), for all neI,,o.
whenever V(ng, xo)=r,.

1). Let ¢>0 and ngel, be given. From the upper semistability of the zero
solution of (E) it follows that, for every nyel, and any ¢ =al(e), there exists

n=n(ny, € >0, such that roe A, ro<n implies

(3.2) rn; ng, ro)<ale), for all neI,,o.
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From (H1), for every ny e I, and n=n(n,, &), there exists a § =3d(n,, €)>0 such that
for any xoeS(p). |xo|<d it follows

(33) Ving, xo)<n(ng, &).
Taking into account (3.1) and (H,) we get
a(|x(n; ng, xo))EV(n, x(n; ny, xo))=r(n; ng, ro)<ale),

for all nel, and any x(.; ng, x,), whenever V(ng, xo)<ro,<n(ng, €), and this is
possible, according to (3.3), if | xo|<é. Therefore, |x (n; ny, xo)|<e for all nel,,
and any x(.; ng, Xxo) With |x,|<d(ng, €).

2). The stability of the zero solution of (S) is given by part 1). Let now £¢>0 be
given. From the asymptotic upper semistability of the zero solution of (E) it
follows that, for every nyel, and any & =al(e), there exist a no>0 and an n, €1, ,
such that, if roe 4, ro <ny and nel, , we have r(n; no, ro) <a(e) for any r(.; no, ro).
Now, according to (H1), for ne 1,, and 7o, there exists a d,> 0, such that x, € S(p),
|xol <dy, implies V(ng, xo) <1, We will show that é, and n, are those from the
definition of the asymptotic stability. The proof is by contradiction. Assume that
there exist xg, |xg| <0, and n* € I,,e, such that |x(n*; ng, xg)|=¢,. If we take
ro= V(n,, xg), then we have V(n, x(n no, x0)<r(n ne, ro) for all nel, and any
solution x(.; ng, Xo). In view of hypothesis (H2) one can now wrlte

ae) S V(n, x(n*; ng, x5)<r(n*; no, ro)<afe),

a contradiction.

3). Now, from the uniform upper semistability for an arbitrary ¢>0 there
exists a n=rn(g) >0, such that (3.2) holds and, according to (H1’),  =(¢), such that
(3.3) to be fulfilled. In the sequel the proof is similar to the proof of 1) and will,
therefore, not be repeated here.

4). The uniform stability of the zero solution of (S) is established by part 3).
Now, from the uniform asymptotic upper semistability of the zero solution of (E)
it follows that, if £>0 is given, there exist a n,>0 and a natural number [(g)€ I,
such that rye A, ro<n, implies r(n; ny, ro)<e for any r(.; ny ro) and all
"51,.0+1m- The proof continues by a similar reasoning to than from 2).

Remark 3.1. From Theorem 3.1 one can easily obtain the results of
J. Schinas and A. Meimaridou [5]. Thus, Theorems 1 and 3 will be
obtained if we take w(n, r)=0. Then the zero solution of (E) is uniformly upper
semistable and hypothesis (H3) becomes V(n, x, F)<0 for all (n, x)eonS(p)
Let now consider w(n, r)= — ¢(n) c(r), where ce X 'and ¢ : I,—~R™* is such
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that E @(n)= . We can show that the zero solution of Ar(n)= —q(n) c(r(n)),
wherg =/? =[0. o), is asymptotically stable and, therefore, it is asymptotically upper
semistable. Actually, if r(s) £z <r(s+ 1), then c(r(s)) < ¢(z) £ c(r(s + 1)) and from here,
Arﬂ _ ris+1) dz s ris+1) ﬁz—-
c(r(s)) iy cr(s) T rs @)

Taking into account our equation, we obtain

n—1 r(s+1) r(n) d n—1
G4 =T | gs L2 <5 ols), rm)=rn; ne. ro).

s=ng r(s) C(Z) r(ng) C(Z) s=ng

From here, according to our hypothesis on ¢(n), it follows that lim r(n; n,, r,)=0.

Theorem 5 [5] follows, since (H3) becomes A*V(n, x, F)< —¢(n, x)), for
all (n, x)elI,x S(p), and Theorem 7 follows if we take @(n)=1, nel,, because
condition A*V(n, x, F)< —c¢(V(n, x)) is weaker than A*V(n, x, F)< —c(|x]) for all
(n, x)el, x S(p).

In order to obtain sufficient conditions assuring the upper semistability of
the zero solution of (E) we shall extend some of those given by L.Yu. Ana-
polskii [1].

3.2. Assume that for any (n,, ro)el, x A there exists a neighbourhood U of

r=0, such that U < A. If for every n, €I, there exists xe R* nU, such that for any
re(0, ) and ne],,o.

(3.5) @(n, r)=Ilim sup o(n, r)<0,
50 |r"—r|<s _
then the zero solution of (E) is uppef semistable. Indeed, we have Ar(n)
=w(n,r(n)) £w(n, r(n))<0, from where r(n)=r(n; no, ro)<ro for all nel,,o. If we
choose arbitrary noel, and £>0, then it will suffice to take d=min (, &).
Let now consider w(n, r)=A(n) ¢(r), where ¢(r) and A(n) are such that for any
a>0 there exists b>0, such that

(3.6) J(u) } s <b implies u<a
. U=y —— 4
o @(s)
and, respectively, for every noel, there exists xe R*nU such that
3.7 T As)E —J(ro) for roe(0, ).
S='Io

If we assume that (3.5), (3.6), and (3.7) hold for w(n, r)= A(n) ¢(r). then the zero
solution of (E) is asymptotically upper semistable. We observe that from (3.4) we
n—1

have J(r(n;ng,ro) £J(ro)+ X A(s). and for noel, and £>0 we take d,=2 and
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>0 such that J(u)<y lmplles u<e. According to (3.7), there exists n,el, such
that nel, implies J(r(n ; n,, ry)) <0 uniformly with respect to ro €(0, a). When 3.5)
holds umformly with respect to nel,, the zero solution of (E) is uniformly upper
semistable.

If we consider w(n, r)=Ai(n)p(r) and we assume that (3.6) holds and, in
addition, (3.5) and (3.7) are satisfied uniformly with respect to nyel,, then-it
follows the uniform asymptotic upper semistability of the zero solution of (E).

In the following we shall give a result concerning the weak stability of the
zero solution of (S) analogous to that from Theorem 3.1.

Theorem 3.2. Assume that there exists a function V(n, x) satisfying (H2) and
(H3') . Then the following assertions hold :

1). If V(n, x) satisfies (H1) and the zero solution of (E) is upper semistable, the
end-point 0 of (S) is weakly stable;

2). If V(n, x) satisfies (H1) and the zero solution of (E) is asymptotically upper
semistable, the end-point 0 of (S) is weakly asymptotically stable;

3). If V(n, x) satisfies (H1') and the zero solution of (E) is uniformly upper
semistable, the end-point 0 of (S) is weakly uniformly stable;

4). If V(n, x) satisfies (H1') and the zero solution of (E) is uniformly
asymptotically upper semistable, the end-point 0 of (S) is weakly uniformly
asymptotically stable.

The proof of this theorem is similar to the proof of Theorem 3.1 and will,
therefore, be outlined only for the part 1). Let x(n; ng, xo): I o—vS(p) be defined by

X(ng: ng. Xo)=xXo. X(n+1; ng, X0)=Ypxn: ,,Oxo,eF(n x(n; ng, xo))NS(p). nel,,
Clearly, x(.: ng. xo) is a solution of (S) passing through (n,, x,). Then, as m
Theorem 3.1, part 1), we get:

Vin, x(n; ng, xo))=r(n; ngry) for all nel, whenever V(n,, x,)<r, and the
proof can be continued in the same way.

Remark 3.3. Again, if we take w(n, r)=0, hypothesis (H3’) becomes
A*V (n, x, Vay) =0 for all (n, x)el, x S(p) and y, ,€ F(n, x)nS(p), and ‘we obtain
Theorems 2 and 4 [5]. Taking w(n, r)= — ¢@(n)c(r) as in Remark 3.1, we can obtain
the other results. .

References

I. L. Yu. Anapolskii. On stability of differcntial inclusions. Diff. Uravn., 19, 1983, No4, 555-563
(Russian).
. C. Corduneanu. Application of differential incqualitics to the stability thcory. Ann. St. Univ.
“Al. I. Cuza” lagi, 6, 1960, No 1, 47-58 (Russian).
3. K. Gajewski On the stability conditions of difference cquations obtained by the comparison
method. Bull. Acad. Polon. Sci., Ser.. Sci. Tech., 30, 1982, No.7-8, 39-45.
B. G. Pachpatte. Finite difference incqualitics and quantitative stability analysis of difference
cquations. Indian J. Pure Appl. Math., 5, 1974, No 5, 457-463.
J. Schinas, A. Mcimaridou. On the application of Lyapunov's mcthod to multivalued
difference cquations. Serdica Bulg. Math. Publ.. 9, 1983, 321-325.
. S. Sugly ama. Difference incqualitics and their dpphcauons to stability problems. Lecture Notes
in Math. (Berlin), 243, 1971, 1-15.

~

ENL IS

Departament of Mathematics Presented 21.01. 1987
Polytechnic Institute, Jassy.

ROMANIA



