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A Method for Construction of Strongést Cuts
and Generation of Minimal Covers for
0-1 Linear Programming Problems

Rumen A. Andonov

Presented by P. Kenderov

A combined algorithm for obtaining tighter equivalent formulation of a given 0-1 linear
programming problem is presented. This algorithm incorporates rotation of an original constraint and
addition of new constraints issued from minimal covers. A criterion for selecting those minimal covers
which chdop off given point x* is proposed. The computational experiments with ten test problems are
presented.

Introduction

Consider the following 0-1 linear programming problem:
(P) max {cx: Ax<b, x;€{0, 1}, jeN={1, 2,..., n}},

where all data are integers, A is m-by-n matrix, b and c are vectors of length m
and n, respectively. (P) belongs to the NP-complete or “hard” combinatorial
optimization problem. Nevertheless, impressive computational results for solving
problem (P) have been reported recently in numerous papers (see, €. g. [4, 8,
12, 13]). Two of the ideas which contribute to the advance in this field are:

1) To obtain tighter equivalent formulation of a given problem (P) using the
rotation of a given constraint without adding or eliminating any integer feasible
solution. This method is studied by F. Kianfar in [10, 11] and
I. Kaliszewski and S. Walukiewicz in [7, 8, 9]

2) To chop off part of the feasible set of linear relaxation of (P) by cutting
planes, which are facets of the underlying polytope. This approach is investigated
by E. Balas in [I, 2], M. Padberg in [14, 15, 16], R. Kowal in [13], and
H. Crowder, E. Johnson and M. Padberg in [4].

In this paper a hybrid algorithm which incorporates the two approaches
mentioned above is presented. In section 1 we give the description of the
algorithm which rotates given constraint and generates simultaneously a great
number of minimal covers. Using them one obtains valid inequalities. In section 2
a criterion for selecting those minimal covers whose associated minimal cover
inequalities chop off given point x* is proposed. In section 3 the lifting procedure
studied by M. Padberg in [14] and E. Zemel in [18] is described. We make
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some slight improvements. In section 4 we discuss the entire algorithm for solving
problem (P) — a combination of constraint rotation, cutting planes, and branch-
and-bound techniques. Some results of our computational experiments are
presented in section 5.

1. Constructing strongest cuts using dynamic programming and
generating minimal covers.

It is well known that any integer programming problem has infinitely many
equivalent formulations. In general. the time for solving different equivalent
formulations varies substantially. The computational experiments in [7, 8, 11,
17, 19] illustrate the advantage of a previous processing over the constraints of (P)
in order to obtain tighter equivalent formulation.

For a matrix 4 and vector b we denote: P‘(A, b)={xeR": Ax<bh,0=<x;=1,
JEN} and P,(a, by=conv {xeP (A, b): x{0, 1}, jeN}. An integer programming
problem

(P) max {cx: AxZh, x;e{0, 1}, jeN={1, 2,..., n}},

is called equivalent to (P) if and only if P,(A, b)=P,(4’, b). (P') is tighter
equivalent formulation of (P) if and only if

P(A', b)= P(A, b).

Usually, to obtain tighter equivalent formulation we process every constraint
separately. Any constraint of (P) can be transformed to an equivalent knapsack
type constraint:

(1) g(x)= Z a;x;=a, x;€{0, 1}, jeN,
) JjeN .
where 0<a;<a, Z;n a;>a.
A set SS N is called cover for (1) if ;.5 a;>do. A cover S is called minimal
cover for (1)-if Lo a;=a, for any proper subset Q of S.
Obviously, any solution of (1) satisfies the inequality

(2) Z Xjélsl_]s
JjesS
where | S| denotes the cardinality of the minimal cover S. )

The general method for constructing an equivalent inequality by the
reduction of coefficients of inequality (1) is presented in [3). This method is
Impractical because it uses the set of all minimal covers, the number of which may
grow exponentially with n. .

Another approach is investigated in (7, 8, 9, 11]. F. Kianfar in [10, 11]
described a method for the rotation the hyperplane ¢ (x)=a, without adding or
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eliminating any integer point of the feasible solution set. The new hyperplane

(3) gx)= T ajx;=a,
JjeN

passes through at least as many integer points as g(x)=d,.

If the hyperplane g(x)=a, cannot be rotated, the corresponding inequality
g(x)<a, is a strongest cut or a strongest constraint. The inequality (1) is called a
strongest constraint if for

VieN Jxer @ X 4;X;=4ag and x;=1,
jeN

where F is the feasible set for (1).

In [7, 9] I. Kaliszewski and S. Walukiewicz develop the above
method by introducing the so-called best direction of rotation and study a lot of
properties of the method.

In this paper we proceed to develop ancl modify the previous method.
By rotating a given constraint we simultaneously generate a great number of
minimal covers. In this way we construct minimal cover inequalities (2). The
generated new cuts give even still tighter equivalent formulation. Furthermore, the
minimal covers have good properties. If some additional conditions are imposed,
using them one obtains facets of the underlying polytope. The computational
complexity of the modified algorithm is the same as the original algorithm
O (n*a,). Below we briefly describe the rotation procedure, emphasizing the
modifications.

In order to compute the new coefficients of the strongest cut (3) we have to
solve for all reN the following knapsack problem:

b=max{ X - a;x;:x€S§,}
jeN— ") :

where S,={xeR" :Zjcn_ ,.a;x;Sa,—a, x;€{0, 1}, je N— {r}}. As a new value
of a, we take a,=ay,—b".

Then the inequality Xj. - ,,a;x;+a,x,<a, does not eliminate any element
of F. When b% <a,—a,. the hyperplane X y- .a;x;+a,x,=a, passes through

at least one more binary point than g (x)=a,. The value of b} is computed as the
maximal element of the set
B,={b:b= % a;, J=N-—{r}, b=a,—a,}.
jeJ

The sets B,, r=1,2,..., n, are constructed by dynamic programming (see also
[10, 9, 7).

Extended Rotation and Constraint Generation Procedure.

Step I: (Initialization, r=1). Set B1={0, a,} and compute

(4) B,=B\"'Ulb+a;: beB\*', b+a;<a,} for i=n—1,..., 2.
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Set B,={b: beB}, b<ay,—a,}. Compute b} and a,=a,—b}.

The upper bound of the additions and the comparisons at this stage is 0 (na,).

In the well-known from [10, 9] algorithm, if the sum b+a; in (4) is greater
than a,, it is rejected and forgotten. We use this sum in the following manner:

Let the set Q=N be such that b=X; , a; and b+a;>a, where be Bi*!
and l<i<n. If we have ;

(5) a;<min {q;: jeQ},

then the set S=Qu{i} is obviously a minimal cover. To satisfy condition (5) we
first have to order the coefficients in (1)

(6) a;<a;,, for jeN.

Then in step 1 we make the following modification.
For every element beB) in (4) save and store the associated index set Q such

that b=% \aj.

If b+ a;>a,, then QuU{i} is a minimal cover. In this way any calculation made
in step 1 is used and at the same time through set B, we obtain a great number of
minimal covers. Thus, the extended rotation procedure is also a constraint
generation procedure. We illustrate the newly obtained algorithm by the following
example.

jeQ uli

Example 1.
(7) 6x, + 15x, + 15x3+26x, +38x5 <45
The set of all minimal cover of (7) is:
1L 2,4}, {1, 3,4}, {2, 3,4}, {2,5}, {3,5}, {4,5}

Remark: In this example the sets Q are written above the associated sum b.
When calculating the sums b+ a;, the sets Bi*! are scanned from right to left.
Following the algorithm we compute:

5

|
B$=10, 38}; B+=10, 3

o __ W

4
|
:26%

At this stage the inequality as+a,>a, implies the minimal cover {5, 4}.
We obtain also:

3
5 4 4 3
I |4 |85
' 1=1{0, 38, 26, 41, 15} — the inequality as+a;>a, yields the minimal
cover {5, 3},
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B2=1{0, 38, 26, 4l,

Here, the inequalities ay+a;+a,>a, and as+a,>a, yield the minimal
covers {4, 3, 2} and {5, 2}, respectively.

We have at this stage a,+a,=a,+ay;=41and ay=a,=15. If we save the
information for all index sets Q associated to any sum b, we would be able to find
all minimal covers. To prevent exponential growth of the computational
complexity we choose and store for any b just one set Q, such that b=Zjcga;

Changing this criterion one obtains different subsets of minimal covers. This
fact will be essentially used later. At the present moment we use the following
criterion: '

Rule 1: For every element beB', i=2, 3,..., n, choose and store the index set Q

latest _obtained, such that b=X; ,a,.
J
Then,

In addition, we use the following:

Rule 2: Let the index sets Q and L be such that X, , a;=Zj a;j=>b and
min {j: jeL} =i, where the element beB}, 2<i<n.

In case L should replace according to Rule 1 the set Q, then construct the sum b
+a; (if it is not yet done) and after that reject the set Q.

In this step the storing of the sets Q and their eventual replacements
according to Rule | increase the upper bound of the operations to 0(n?a).

At last from B} one obtains B, = {0, 38, 26, 15, 30}. The inequality a,+a,
+a,>a, yields the minimal cover {4, 2, 1}. In this way 5 from all 6 minimal
covers v?ere f?und. The minimal cover {4, 3, 1} was lost because we abandoned
the set {4, 3.

Let us calculate b]=max {j: jeB,} =38 and a, =7. The set Q={5} satisfies
ZjEQajv=38=b;.

For this equality the coefficients associated to the index set Q cannot vary.
Thus, the saving of the corresponding to every sum b set Q helps to find the new
coefficients. It is also a slight improvement to the well-known rotation procedure.

This change is incorporated in Step 2.

Step 2. 2=r=n-—1)
Set r=r+1. If r=n, then go to Step 3. Otherwise,

B;={b: beB}\*', b=<a,—a,)}.

For i=r—1,..., 1 compute
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B, =Bi*'U{b+ia,;: beBi*', b+a;<ay—a,).

Set B,=B! compute b} and a,=a,—b;.
For the set Q< N, such that b}=X, 4 a; set a,=a; for i€Q.

Step 3: (Termination, r=n). Set BY={0}, i=1 and compute
B,=B, 'U{b+a;: beBi"!, b+a;<a,—a,}

for i=1,..., n—1. Set B,=B,~ !, compute b} and a,=a,—b?. Stop.
The calculations for example 1 are presented next.
For r=2 we obtain
4
|
B3={0, 26, 15}, B}=1{0,26,15,22,7}, b3=26, a,=19, as=a,=26.

) Analogously, for r=3 we compute b3 =26, a;=a,—b%5=19. Thus, the new
inequality is :

Tx;+19x, 4+ 19x3+26x, + 38x5 < 45.

It can be shown [10] that step 2 and step 3 require in the worst case 0(n?2 ag)
additions and comparisons. Thus, the computational complexity for step 1, step 2,

and step 3 is 0(n?ay,).

2. Finding a minimal cover cut for given point x*

The following problem is presented in [3]: Given point x* find a minimal
cover inequality (2), which chops off x* if such an inequality exists.

Next proposition is stated there as well: :

For a given point x* there exists a minimal cover inequality (2) if and only if
z* <1, where

z*=min{X (1-xj)h;: = a;h;>a,, h;e{0, 1}, jeN}.
JjeN JjeN

Here we present another approach to the above-mentioned problem. The
algorithm described in section 1 is used.
Suppose S is minimal cover for (1) such that

@®) T x}>|S|—1
Jjes

for given point x*. Let us assume that in the extended rotation procedure we have
obtained sets Q and L such that:

2 aj= z a‘,=b
JjeQ JeL
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for any beBY, ieN. In this case, according to Rule 1, no more than one set is saved.
Then, it is possible to lose exactly that set Q or L, which generates the minimal
cover S. For that reason Rule 1 has to be modified. We propose the following:

Rule 1A: Assume for any be By, 2<i=<n, there exist two index sets Q and L
such that

¥ a;= X a;=b and suppose X x;Z I X
JjeL JjeQ jeL JjeQ

L|IZ|Q]|, then save the set L.
|L|>|Q|. Denote by d the difference d=|L|—|Q]|.

L,

If £ xj+d> X xj, then save the set Q.
JjeQ JeL

If £ xj+d=< Z xj, then save the set L.
JjeQ JjeL
Theorem 1. Assume for given point x* there exists minimal cover S such
that Zjsx;>|S|—1.
The previous described algorithm with Rule 1A finds at least one minimal cover
T such that ;. xj>|T|—1.

Proof: Suppose the assumptions in Rule 1A are satisfied. It is easy to
observe that in this case the computations in (4) imply either min {j: jeL} =i or
else min {j: jeQ} =i to be satisfied. Denote by S* the set of all minimal covers
for (1). We will show that applying Rule 1A we remain always in such subsets of
S$* for which violated minimal cover inequalities for given point x* exist.

1. Let |LI=|Q].

Then in Rule 1A we have to choose the set L. Our arguments are the
following: .

- If L<S, everything is all right.

Suppose Q< S. There are two cases:

1.1 ieS— Q. Then we have min {j: jeL} =i. According to Rule 2, the set Qu{i}
shall not be rejected. Then it is not possible to lose the minimal cover § in this
case.

This argument is analogous to cases 2.2 and 2.1, and for that reason it will
not be discussed there.

1.2. i¢S—Q. Denote by S, any minimal cover such that for some Rc N we
have S;=QUR and i¢R. Obviously, S is such a minimal cover. Since Z;,a;
=X, a;and the indices of S, decrease, then S, =LUR is a minimal cover as well.

Suppose ZI-GSQ xj>|So|—1. Since ;. xj=ZLjoxj, this yields

Txj=EZxj+IZIxjZIZxj+Exj=2Z x;>|8g]—1
JjeSy, JjeL JjeR j€Q JjerR jeSQ

=|Q|+|R|=1Z|L|+|Rj—1=|S |1
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Hence, ZjesLx;> |S.|—1 and this inequality chops off also x*.
2. Let |[L|>|Q]| and d=|L|—|Q|.
2.1. Zjoxj+d>X; x;. Suppose ZjEsLx;>|S,_|—l. Then we have

T Xj=EZxj+Zxj>Zxj+Zxj—d=Z xj—d>|S.|-1-d
jeSQ j€Q JER JjeL JeR jeSy,

=|L|+|R|—-1—d=|Q|+|R|=1=|S,|— 1.

Hence, Zjesqx,‘->|SQ|—l. Consequently, in this case we should save
the set Q.

22.%,0xj+d =X, xj. In this case from the assumptionE,GSQx,'j> |Sol—1 the
inequality ZjesLxJ‘->|SL|—1 follows. Indeed, it is easy to see that

IS |—1=|L|+|R|—1=|Q|+d+|R|=1=|Sp|+d—1< T x}+d

JjeS, 10}

=X xj+ Z xj+d=sX xj+Z xj=Z xj.
j@ 7 jeR it e jesy

We thus conclude that in the last case we should save the set L.

3. Strong covers, facets of the knapsack polytope and lifting procedure

In this section we briefly present some results of E. Balas [1] concerning a
class of minimal covers, which construct facets of the knapsack polytope. These
results are incorporated in our algorithm. Here we present also the well-known
lifting procedure (see [14, 18]) with slight improvements. '

In this section by P, we denote the set:

P,=conv{xeR": T a;x;<a, x;€{0, 1}, jeN}.
JeN

Suppose -also the inequality a;<a;.,, jeN, satisfied. Let us assume S is
minimal cover and denote by S’ the set S'={jeN—S:a;>a; |, where aj
=max {a;: jeS}. The set E(S)=SuUS’ is called extension of § to N.

The set SS N is a strong cover for (1) if and only if S is a minimal cover and
either E(S)=N or else

p) aj<a, 1s true,

JES—=y uti ]
where j1 is defined as above and g;, =max {a,-:jeN—- E(S)}.
An inequality fx < f, is called a facetial inequality (or simply a facet) for the
polytope P, if
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(i) xeP; implies fx = fo .

(ii) there exist exactly d affinely independent points x' of P, satisfying xXi=f,
for i=1,..., d, where d=dim P,.

The following theorem is due to E. Balas [1].

Theorem 2. The inequality T\ x; <k, where |M|>2, M= N, k=0, defines a
facet of P, if and only if M is the extension of a strong cover S for (1) such that | S|
=k+1and T,ra;<a, T=(S—{jl,j2})u{n} with j1 defined as above and j2 by a;,
=max {aj: jeS—{j1}}.

The following theorem [15] answers the question whether a facetial inequality
retains its property of defining a facet when the number of variables increases.

Theorem 3. Denote by P$ the polytope: Pi=P;n{xeR": x;=0 for all jeN
—S}. If the inequality Z,sf;x;<f, is a facet of P$, then there exist non-negative
numbers q;,q;=< f, such that

Tfix;+ T q;jx;<fo is a facet of P,
jeN—S

JjeS

That is why it is useful to find a facet even for a low dimensional polytope.
Moreover, the lifting procedure [14, 18] used to compute the new coefficients g,
jeN —S, can be applied to any valid inequality for P,.

Suppose (9) is a valid inequality for P; or a facet for P§

)] T fix;=fo
Jjes
Let ke N—S and

(10)  zz=max{ Z fjx;: ‘Zs a;x;<a,—a,, x;€{0, 1}, JjeS}.
Jje S JE

We redefine S to be SuU{k}, set g, =f, —z,, and repeat that until the set N —§
is completely exhausted.

In the lifting procedure (10) the order of obtaining the new coefficients g, is
not fixed. The following example illustrates how important it is to define the
sequence of scanning the set N —S.

Example 2.
max  1200x, + 1300x, + 1300x; + 1200x, + 899x 5 + 999x6 + 899x, + 1099x,
st 13x, 4 13x, 4+ 13x3+ 13x, +9x5 + 10x6 + x5 + 1 1xg <39
x;€{0, 1}, j=1, 2,..., 8

Suppose we have found the valid inequality

(1n X+ X+ X3+Xg+ X +XgS3.
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After adding the new constraint (11), the solution of the relaxed problem is
7;.p=3898.78, xi=x3=x3=1, x3=02223, xi=xi=xi=x:=0

If the lifting procedure (10) scans the set N —S={5, 7} from left to right, then
one obtains gs=1 and g,=0. The lifted inequality is

X+ X+ X3+ X+ Xs+Xg+Xg =3

It does not chop off x*.
If the lifting procedure (10) scans the set N —S= {5, 7} from right to left, then
one obtains g,=1 and gs=0. The lifted inequality is

Xy +X,+ X3+ X4+ X7+ X6+ Xg =3,

It chops off x*.

Any scanning of the set N —S§ can be connected with a permutation p= {p,,
P2---, Pysj» where s=|N—§|. It means that, first, we take index p,eN —S, after
that, index p,e(N—S—{p,}), etc.

Let us assume p={p,,..., p,} and r={r,,..., r,} are two permutations of the
set N — S, which satisfy the conditions: r;=p, for i#1, i# m, for any indices | and m
such that 1=</<s and 1<mZ<s.

. Theorem 4. Assume in the lifting procedure (10) k=p,=r,. If I<m, then
T=f% where [y and f% are the coefficients computed for the permutations p and r,
respectively.

Proof: For simplicity of presentation we denote: A={p;: |<j<I—1}; B
={pj:l+1=5jsm—1}; C={p;: m+1=j<s}. Then p={A4, p, B, p,, C} and r
=1{A, p,, B, p, C}. According to the lifting procedure (10) we have: fA=fo—zL,
where zf=max{2jeAfjxj:Zje,.ajxjgao‘—ak, x;€{0,1}, jeA} and fi=f,—z,
where Zp =max {zje AU{pm}vajxj X AvlmlvBA; XS ag—ay, xje{o’ 1}, JjeA
{Pmj B}

We thus conclude that zf <zj. Therefore, fF>f].

From the previous theorem it follows that it is better to compute first the
coefficients of the non-zero variables and after that — the coefficients of the zero
variables.

4. Realization of the algorithm in the case of general 0-1
linear programming problem

~ Let us have problem (P). Denote by (', b;) the i-th row of (4, b) and define by
Py=conv {xeR": a'x<b, x;€{0, 1}, jeN} the convex hull of the zero-one
solution to the single inequality a'x<b,, where ieM. Then the inclusion

(12) P.(4, b () P}

i=1
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is satisfied. The equality in (12) does not, in general, hold, but it holds if
problem (P) decomposes totally into m knapsack problems. For that reason the
computational effectiveness increases when matrix A is sparse. This fact is
confirmed by the computations of [4], as well as by our computations.
Step 1. First, we relax the zero-one problem (P) to its associated linear
problem, i. ., we replace the integrality condition x;€{0, 1} by 0=<x;<1 for all
jeN. The relaxed problem is solved by Dantzig’s method. Denote by f(x,p) it’s
sclution. : '

Step 2. If x, » is not integer, then we apply on every constraint a' x, p = b, the
Extended Rotation and Constraint Generation Procedure with Rule 1A. Every
generated minimal cover is checked if the associated minimal cover inequality
chops off x, p. If there is not such a minimal cover, we proceed with the next active
constraint. Else, if the so obtained violated inequality is not a facet, it is extended
using the lifting procedure. Then the new constraint is added and the newly
constructed 0-1 linear programming problem is solved in relaxed form. If the
new obtained solution x,, is not integer, we continue the Extended Rotation and
Constraint Generation Procedure.

Step 3. If every active constraint for the point x,, is rotated and the

addition of the new constraints in Step 2 does not yield an integer point x, p, then
we proceed with branch-and-bound techniques.

5. Computational experiments

A program based on the method described previously has been developed. It
is coded in FORTRAN and is named COFACE. The branch-and-bound phase is
realized by the code BRMIP (see [20] for more details).

BRMIP COFACE + BRMIP
N n m 1 it il_. m, t it
1 11 4 1.6 236 18 5 1.6 201
2 13 4 3.5 440 20 5 1.9 209
3 14 4 4.0 625 30 8 4.2 455
4 1 4 1.4 183 20 5 1.6 156
5 22 4 103.  +20000 ° 40 11 88.3 6929
6 23 4 108.  +20000 38 12 72.3 5251
7 22 3 203. 420000 88.9 11001
8 23 3 202. +20000 53.9 5248
9 15 6 4.0 525 22 6 1.4 94
10 30 10 47.6 4420 39 8 15.2 479

Where:

N — number of Haldi's test problems in it's binary expansion

n — number of binary variables

m — number of constraints

t — time in seconds

it — number of all iterations (when + the optimality is not obtained)
it, — number of iterations made in COFACE

m, —number of added constraints in COFACE
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Here we present ten test examples of H. Haldi [5, 6]. These problems are
solved in two ways. The first uses only BRMIP. The second uses COFACE and
BRMIP. If the addition of new constraints in COFACE does not yield an integer
point, then branch-and-bound processing continues in BRMIP. The runs were
executed on IBM 370/148. The results obtained are given below in the table.

The program BRMIP has been elaborated in the Institute of Mathematics of
the Bulgarian Academy of Sciences for the general integer programming problem.
The ten original Haldi’s examples were solved easily, but their binary expansions
produced lot of troubles of BRMIP. It concerns mostly the problems 5-6, where
the computational effectiveness of COFACE is greatest.

These results confirm the thesis that in numerous cases a preliminary
preprocessing, like the one described in this paper, decreases considerably the
iterations in branch-and-bound methods and at the end speeds up the solving of
problem (P).
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