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Presented by St. Negrepontis

In this paper a queueing model where N queues compete for the contro! of a common server is
examined. A very successful approximate method for this contention scheme which reduces
significantly the enormous state space required for the complete description is presented. The steady-
state queue size distribution using the simple iterative scheme is obtained. Besides, based on this
distribution various response measures are evaluated.

1. Introduction

Analyses and modelling of computer systems, computer networks and data
communication networks, by using a network of queues have received increasing
attention in the last years. In such situations it is important to know system
utilization, queue size distributions, delay, etc. Open and closed queueing network
models have been usually used in order to analyze computer networks and
computer systems, respectively.

Many analytical models admit closed form solutions or efficient
computational procedures, which provide insight into the mechanisms underlying
a system. So, performance evaluation is not just determining whether or not a
system meets certain objectives; it is also clarifying if and how system
performance can be improved. Queueing network models, in particular, are well
suited as computer system and computer network models because they are able to
capture the interaction between the workload and the resources of the system.

A significant breakthrough occurred when J. R. Jackson developed a
solution technique for open queueing networks [3]. In addition, W. J. Gordon
and G. J. Newell obtained the equilibrium state probabilities for closed
queueing networks [2]. The above results have been used extensively in order to
analyze computer systems and computer networks. ) )

The present work was motivated by the problem of investigating the
behaviour of data communication and computer network systems. In such
situations, whenever a given station attempts transmission, the attempt may be
unsuccessful because of interference from another station. In this case, a
retransmission procedure occurs. The fact that the activity at one queue affects the
behaviour of other queues gives rise to statistical dependence among the queues.
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Mo[c]iesl]s for the analysis of computer networks of this type have been presented
n [1,

In this paper, we examine the case where a common server is shared among
N queues in such a way that at any time at most one queue is served (see Fig. 1).
The service rights are obtained according to specific rules. These rules for the
control of the server may be considered to be distributed. That is, there is not any..
central scheduler to share the server among the queues, but any non-empty queue
attempts to control the server according to predefined rules regardless of the
actions of the rest queues. The interaction among the conflicting queues results in
strong interdependence among the queues. In this paper, we propose a simple way
to decompowe the interrelated queues to single queues expressing the interde-
pendence through a certain number of parameters. The number of parameters
equals the number of queues. We conclude to a simple iterative scheme capable to
handle the above-described situation. Our approach has checked by analytical
results when the number of conflicting queues is equal to 2 and using simulation
results when the number of queues is greater than 2. :

In the next section we give the formulation of the problem, and we include all
the necessary assumptions. In section 3 we evaluate the queue size distribution,
while in section 4 various response measures are computed. Finally, in section 5 a
discussion concerning our approach and some numerical results are presented.

2. Formulation of the problem

We consider N queues, which are serviced by a common server. We will use
a discrete time approach so the time is supposed to be slotted. The slot length is
the time required by any job of each particular queue to receive service, if this
queue has the control of the server. Each individual job needs service of one unit
time (one slot) regardless of which queue it belongs. The i-th queue has a waiting
room for at most M, jobs, and receives jobs with a probability Z; per slot, that is,
the interarrival time is supposed to be geometrically distributed with a mean 1/4;.

Figurc 1. N qucucs with a common scrver
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We assume that any non-empty queue which in the sequel we will call active
queue, may acquire the control of the server at the beginning of any slot with a
probability p(i), where i is the number of active queues at the beginning of the
corresponding slot. So, the total probability that a job belonging to anyone of the
i active queues receives service is ip(i), and the probability that the server is wasted
when there are i active queues is 1 — ip(i). The dynamic definition of the
probability that a queue acquire the control of the server permits the system to
adjust to instantaneous load conditions. Obviously, a good policy concerning the
probabilities p(i) must obey the following rule: As the number of active queues
decreases, the probability p(i) increases, and as the number of active queues
increases,the probability p(i) decreases in such a way that ip(i) approaches unity.
Such a choice for the probabilities p(i) insures low delay in the case of light load
conditions and high departure rate in the case of heavy load conditions.

In general, we can describe the state of the above defined system by a vector
n=(n,, n,,..., n;..., ny), where n; is the number of jobs waiting in the room of the
i-th queue, i=1, 2, 3,..., N. Using this vector as state description vector, we can
construct and solve a discrete-time Markov chain in order to have the queue size
distribution of the system. But the number of possible states is too large to permit
a tractable numerical analysis, except for very small values of the number of
queues N and the waiting room sizes M,. Therefore, approximative methods are
mandatory.

We can simplify the above situation, if we impose a rather weak constraint,
which is typical in practical cases, that all queues have equal waiting rooms of size
M, that is, M;=M for i=1, 2,...,N, and that the arrival probability of a new job
at any queue is independent of each individual queue and its value is 4, that is, 4;
=4 for i=1, 2,..., N. '

Under the above considerations, every queue is statistically identical with the
rest queues as far as the input and the output process is concerned. The
probability that an active queue has the control of the server is independent of
the number of the jobs waiting in the queue and depends only on the number of
active queues. It is obvious that the number of jobs waiting in a queue does
describe the queueing behaviour of every other queue correctly. The rationale for
this property lies in the fact that all queues have the same chance to receive a new
job or to service one. So, if we can analyze an isolated queue, we can have
estimates for the behaviour of the whole system.

We observe that each individual queue is affected upon only by the
number i of active queues and not by the number of jobs waiting in each active
queue. So, we can choose the vector s=(i, j) as state description vector, where i is
the number of active queues and j is the number of jobs waiting at a tagged queue,
say queue 1, at the beginning of a slot. With this state description the state space is
significantly decreased. So, if we can construct a Markov chain describing the
dynamic behaviour of the system, we can calculate the joint probability
distribution of the number of active queues and the number of jobs waiting in a
queue. In order to do so only one problem remains: the description of the
evolution of the number of active queues if another queue, except the tagged one,
has the control of the common server. In the next section we propose a simple
way to overcome this difficulty and we evaluate the queue size distribution of the
tagged queue.
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3. The queue size distribution

The stochastic process {s', t=0, 1, 2,...} describes the dynamic behaviour of
our system. In order to construct a Markov chain out of this stochastic process we
examine the state of the system at the beginning of a slot, and we make a further
assumption which will be justified under the assumption that all queues have
statistically the same behaviour.

We must differentiate among the following events, concerning the control of
the server.

Event 1: the tagged queue acquires the control of the server.

Event 2: another queue, except the tagged one, acquires the control of
the server.

Event 3: none queue acquires the control of the server.

Similarly, we must differentiate between the following events, concerning the
input process.

Event 4. the tagget queue receives or not a new job.

Event 5: k empty queues among the rest become active.

Finally, in the case when another queue except the tagged one acquires the
control of the server we distinguish between the following events.

Event 6: after service completion the queue becomes empty.

Event 7. after service completion the queue remains active.

Given the state (i, j) of the system we have

Pr {Event 1}=p(i)(1 —0;o)
Pr {Event 2} =ip(i)é o + (i — 1)p(i) (1 — o)
(1) Pr {Event 3}=1—ip(i)
Pr {Event 4} =4d;;,,+(1—4)d;;
Pr {Event S}=b(N —i, k. 2)(1—=3,0)+b(N—1—i. k, 7)d,
Pr {Event 6} =t(i)
Pr {Event 7}=1—t4(i),

- where 0;; is the Kronecker delta

@ 5 1 for i=j
) Y710 otherwise

and b(N, i, 4) is the binomial distribution density function, that is,
<N>PU—D“‘ for i=0,1,2,..., N

(3) b(N, i, 2)= 0 otherwise.
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The probability (i) is the probability that a job departure from an active
queue, when there are i active queues at the beginning of the previous slot, leaves
the queue empty. We introduce these probabilities (assuming that they exist) in
order to reduce the general stochastic process {s', t=0, 1, 2; into a Markov
chain since the state of the system at the beginning of the (t + 1)-th slot depends
only on the state of the system at the beginning of the t-th slot and on the events
occuring during the t-th slot. These probabilities are the same for all queues
because the behaviour of all queues is statistically the same. So, they can be
computed from our tagged queue. In the sequel, we will present the transition
matrix P for the Markov chain, and we will compute the probabilities ¢,(i).

Using the above-defined probabilities for the events 1-7 given by (1), the
transition probabilities p,, from state s=(i, j) to state s’=(i’, j) can be derived by
the relations

p(,-.j)(,-.,_,-.)=p(i)b(N—i, i'—_i, /.')(':'5j‘]+(l —/:)51.]_ 1)
(4) +@—Dp()[to()b(N —i, i'—i+1, A)+(1—to(Db(N —i, i'—i, A)J(Ad;+
+(1—=4)0;.)+ (1 —ip())B(N —i, i'—i, A)(Adj.j4, +(1—4)d;.)).
for i=1, 2,..., N and j=1, 2,..., M—1;
Pitrie i =POIAS, BN =i, '=i, 2)+(1 = 2)3,0b(N —i, i'—i+1), 1]
(5) +(@i—Dp@)[to()b(N —i, i'—i+1, A)+(1—to()b(N —i, i'—1, ).)](,15,,1.“.
+ (1= A)3;.) + (L —ip(b(N —i, ©'—i, A)(Adj54 1+ (1=2)8;)),

for i=1, 2,..., N;
Paiomytio oy =PUBIN =i, =i, 2)8 ;00— 1 + (i — D)p(i) [to()BN — i, i'—i+1, )
(6)  +(1—to()b(N —i, i'—i, A))S;a+(1—ip)b(N —i, i'—i, 2)5;. u.
for i=1, 2,..., N;

Pi.oyirj = 1P0) [Lo()BIN —i—1, i'—i, A)Ad;.,
Fb(N=i—1,i'—i+1,)(1=2A)8 0] +(1 —to (NB(N(N—i—1, i'—i—1,2) A, ,
(7) +BN—i—1,i'—i, A1 = 2)8 011+ (1 —ip()) [BN —i—1,i'—i—1,A)A8;.,
FB(N—i—1, i'—i, A)(1— )80,

for i=1, 2,...., N;

(8) p(O.O)(l".j'):b(N— 1, i'—' 1, A.');"éj'l +b(N—' 1, i., A)(l “‘}»)51.0.
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We will evaluate the probabilities ty(i) from our tagged queue for which we
have the evolution of the number of jobs in its waiting room. This probability
is given by

M
) to()=(1- /1)7‘(-'.1)/'517’(:'.1')-

where 7, is the steady-state probability that the system is in state s=(i, j).

We observe that the transition matrix P is-a function of the steady-state
probabilities n; ;. Thus, the steady-state probabilities n; ;, which are components
of a row vector m, can be computed as the solution of the non-linear system:

n=mn.P(n

(10) (m)

Zn(,-'j, = 1,
ij

using the following simple iterative scheme.

a)If M=1,setty(i)=1,fori=1,2,..., N. Otherwise, if M > 1, assign arbitrary
initial values to the probabilities tq(i), 0<ty(i) <1.

b) Solve the system of equations (10), which in view of step a) is a system of
linear equations, with respect to the steady-state probabilities 7 j).

¢) Compute new estimates for the values of the probabilities t4(i) from (9).

d) Repeat steps b) and c) until a convergence criterion is satisfied.

Thus, the satedy-state probabilities 7 ; may be computed by the solution of
a series of systems of linear equations. The choice of the initial values for the
probabilities t,(i) does not seem to be crucial although a few iterations can be
saved giving reasonable initial values. Obviously, if M =1, only one iteration is
necessary. '

4. Response measures

In this section we will evaluate some system response measures, namely, the
- mean departure rate, the average number of jobs waiting in a queue, the average
number of active queues, the mean delay for a job and the blocking probability.

Mean departure rate ry, The conditional probability that a job of the
tagged queue leaves the system is by definition the probability p(i), when the
tagged queue is-active and there are i active queues including the tagged one.
Thus, the mean departure rate of the tagged queue rl, is given by

N oM
(11) rie=% X p(l)n(i.j)-
i=1 j=1

So, the total departure rate r,, is given by

(12) Fou=N . IGue
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Average number of jobs waiting in the queue J. In order to
evaluate the average queue length of any queue we choose the tagged queue.
Obviously, in equilibrium, the result holds for all queues because they behave
identically. Thus,

(13) J=

M=z

M
Z jmgjy
1 j=0

Average number of active queues Q. Obviously, the average
number of active queues can be obtained from the relation

N M
(14) q= z X in("_j).

i=0 j=0

The average number of active queues can also be obtained as follows. We can
consider that Q is the expected value of N “independent” processes when each
" process is active with probability p. In this case, we have

where
N
(16) p=1 “E:o 7,0y

Mean delay D. Using Little’s theorem [4], we conclude
(17) D=J/r,.

Blocking probability Py The blocking probability Py is defined as the
probability of a job rejection because the waiting room is full. So, we have

N

(18) ‘ Pg= _?l"u.lm'

Because of the finite waiting room the real input rate of a queue r? is less than 4
and is given by

(19) ri,=A(1—Pp).
Besides, in equilibrium the real input rate must be equal to the output rate, that is,
(20) rn ="gue

So, we can also use (19) and (20) in order to evaluate the mean output rate.

5. Discussion

In this section we will compare the results obtained using our model with
analytical results when the number of queues which share the common server is
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equal to 2, and we will dliscuss some simulation results when the number of
queues is greater than 2.

We will examine the case when the number of queues is supposed to be N =2
with waiting rooms for M =3 jobs. In this case we can construct and solve a two
dimensional Markov chain with state vector (j,, j,), where j;=1, 2, is the number
of jobs waiting in the i-th queue. So, we can have the exact solution and we can
compare this solution with the solution obtained using our approach. The
following cases are examined:

1. A=0.05 jobs/slot
p(1)=1, p(2)=0.5

2. ~.=0.05 jobs/slot
p(1)=0.1, p(2)=0.1

3. 2=0.5 jobs/slot
p(l)=1, p(2)=0.5

4. 4=0.5 jobs/slot
p(1)=0.1, p(2)=0.1

In cases 1 and 3 the probability that any queue has the control of the
server is equal to 1, while in cases 2 and 4 is equal to 0.2. The results are shown
and compared in Tables 1 and 2 for the queue size distribution and for the
response measures, respectively.

Our results have been compared with simulation results. The simulation
model which is used was of fixed time increment and the simulation run length
was for 50000 time units. The simulation results show a striking agreement with
our results for various values of 4 and for various values of the probabilities p(i).

In particular, the following cases are examined. The number of queues is
supposed to be N =10 with waiting rooms of size M =3 jobs. The probabilities p(i)
are given by .

p()=1, pli)y=(1—1/i~'  for i=2, 3,..., N (Table 3)
Table |
Cases Steady state probabilities for N=2 M =3
a) w. b) e state 0 state 1 state 2 state 3

la. 0.948682 0.051246 0.000071 9.1.1078
1b. 0.948682 0.051246 0.000071 9.5.10°8
2a. 0.529713 0.278796 0.132061 0.59427
2b. 0.529713 0.278796 0.132061 0.059427
3a. 0.262820 0.416666 0.247863 - 0.072649
3b. 0.263145 0.416672 0.247114 0.073067
4a. 0.001976 0.019762 0.177865 0.800395
4b. 0.001976 0.019762 0.177865 0.800395

(*) results obtained using the exact analysis
(*#) results obtained using our approach
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Table 2
Cases Response measures for N=2 M =3
i)« b) es Tout J 0 D
la. 0.099999 0.051388 0.102635 1.027777
1b. 0.099999 0.051388 0.102635 1.027777
2a. 0.094057 0.721203 0.940572 15.335417
2b. 0.094057 0.721203 0.940572 15.335412
3a. 0.927350 1.130341 1.474358 2.437788
3b. 0.926932 1.130100 1.473701 2.438375
4a. 0.199604 2.776679 1.996047 27.821784
4b. 0.199604 2.776679 1.996047 27.821781
}‘) results obtained using the exact analysis
**) results obtained using our approach
Table 3
N=10. M=3, p()=1, p(i)=(|—l/i)‘-7l for i=2,..., 10.
Cases Response measures
) v D) ee Tout J Q D
~=0.01 a. 0.099999 0.011847 0.117978 1.184757
+=0.01 b. 0.099919 0.011801 0.117971 1.181057
+~.=0.025 a. 0.249928 0.049577 0.466195 1.983682
»=0.025 b. 0.249999 0.049575 0.466190 1.983008
2.=0.05 a. 0.401593 1.294923 6.770601 32.244664
+=0.05 b. 0.401623 1.294982 6.770563 32.243720
~=0.1 a. 0.388274 2.444812 9.649301 62.966010
2=0.1 b. 0.388183 2.444892 9.649353 62.982974
~=0.25 a. 0.387465 2.824623 9.980742 72.900043
2=0.25 b. 0.387465 2.824623 9.980748 72.900043
Table 4
N=10, M=3, pli)=1/i for i=1, 2,..., 10
Cases Response measures
a) », b) e Tout J Q D
+=001 a. 0.099999 0.010499 0.104946 1.049999
~=0.01 b. 0.099953 0.010510 0.104951 1.051494
+=0.025 a. 0.249999 0.028749 0.286340 1.149984
-£2=0.025 b. 0.249793 0.028752 0.286343 1.151033
+=0.05 a. 0.499969 0.072433 0.705876 1.448758
/=005 b. 0.499999 0.072425 0.705843 1.448503
+=0.1 a. 0.959749 0.590610 4.070083 6.153792
+=0.1 b. 0.959740 0.590612 4.070085 6.153875
/=025 a. 1.000000 2.446678 9.707716 24.466772
+=025 b 0.999999 2.446701 9.707752 24.467043

*) results obtained using our approach
**) simulation results
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(in this case we have ip(i)<1 for i=2, 3,..., N)

pi)=1/i (Table 4)

and

(in this case we have ip()=1 = for i=1, 2,..., N).

The arrival probability A assumes the following values: 0.01, 0.025, 0.05, 0.1, 0.25.

We observe that all the results show excellent agreement with the results
obtained using our approach. This fact corroborates the accuracy of our
approach, which is based on the reduction of the state space.
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