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Relationships between Invariant Subspaces and Deflating
Subspaces of a Regular Pair (F, G)

G. Kalogeropoulos*, N. Karcanias* ™

Presented by St. Negrepontis

For a regular pair (F, G) the relationship between the deflating subspaces [1] and ®-(F, G)-
invariant subspaces [2] [3] of the domain of (F, G) is established. The characterization of deflating
subspaces by invariants allows the extension of perturbation results to the case of ®—(F, G)-invariant
subspaces.

1. Introduction

In the study of perturbation theory of the generalised eigenvalue eigenvector
problem defined on a regular pair (F, G)e.%¢}, , a key notion has emerged: the
notion of the deflating subspace introduced by W. Stewart [1]. The aim
of this paper is to establish the links between the invariant subspaces of a regular
pair of matrices [2], [3] and the notion of deflating subspaces. For a regular pair
(F, G)eZL" , a d-dimensional subspace of R", % , is defined as a deflating subspace
iff dim (F% + G%)<dim % =d. It will be shown that a d-dimensional subspace %
is a deflating subspace of the regular pair (F,G)e¥", ,, iff % is a ®—(F, G)
elementary divisor subspace (i. €., the set of strict equivalence invariants of the
restriction pencil (F, G)/ 4 [4] is characterised by elementary divisors and possibly
zero row minimal indices). Our analysis also demonstrates that in the definition of
deflating subspaces given by Stewart [1] the equality sign should be used instead
of “ <" since there is no subspace of R" for which strict inequality of the “<”
holds true.

So, the perturbation results established by Stewart for this case may be
transferred to the invariant subspaces of a regular pair (F, G)e<}, ,. The results
presented here for regular pairs extend to the more general case of entirely right
regular pairs.

2. Characterization of invariant subspaces of a regular pair
Definition (2.1) [5): The pair (F, G), F, GeR"*" is said to be regular if

p=rankggs g {SF—sG}=n, where sF—$G is the associated homogeneous matrix
pencil.®
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Note that the terms given for the pencils will also be used for the pairs (F, G)
which “generate” the pencil sF —$G. By factorising the invariant polynomials f; (s,
$) of the Smith form into powers of homogeneous polynomials irreducible over C
we obtain the set of elementary divisors (e. d.) of the pencil sF—$G; these
are of the following type: s, §% and pairs of complex conjugate e. d. (s—as)’, (s
—as), a, aeC. For the pair (F, G) we define: e. d. of the type $§? are called
infinite elementary divisors (i. e. d.), e. d. of the type s” are called zero
elementary divisors (z e. d.), and e. d. of the type (s—as$)" are called non
zero finite element divisors (nz. f. e. d.). Elementary divisors of the type
sP, (s—asl)", a#0 will be referred to as finite elementary divisors (f. e. d.).
In the following &} , shall denote the set of regular pairs of dimensions n x n.

The classical theory of matrix pencils deals with the study of invariants and
canonical forms of the strict equivalence classes [5] & (L) when Le.#,, ,. The map
f:2, ,~{fed}x{ie d}isacomplete invariant for & ,(L). The existence of a
complete set of invariants for pairs Le’, , implies the existence of a canonical
form known as Weirstrass canonical form [5].

Definition (2.2): A pair (F, G)e <", ,, m=n, will be called entirely right regular
(e. r. r.) iff sF—S$G is characterized by e. d. and possibly zero row minimal indices
(r. m. i.)m

For a given e. r. r. pair (F, G) the types of invariants of sF—$G will be
denoted in short by Dy, D, D,, where D, is the set of z. e. d. of the pair (F, G), D
is the set of infinite e. d., and D, is the set of finite and non zero e. d.

The key tool in our study of invariant subspaces is the notion of the #
— restricted ordered pair. This definition is stated next.

Definition (2.3), [2]: Let (F, G)eR™*"x R™*", % < R" be a subspace of R" and
V a basis matrix of % . The pair (FV, GV) will be called a %-restricted
ordered pair; the assosiated pencil sFV—3GV will be termed (F, G) —%
restriction pencil and shall be denoted by (F, G)/u.m

Note that for a given % the pair (FV, GV) or the pencil sFV—3$GV is not
uniquely defined since the definition involves a particular choice of basis matrix
for 4 ; it is clear, however, that for a given & all restriction pencils are strict
equivalent [5] and thus they are characterized by the same set of strict equivalence
invariants. It is due to this fact that the algebraic structure of # with respect to
the pair (F, G) is independent of the particular choice of basis.

Definition (2,4): Let (F, G)eR™*" x R™*", % = R", be a subspace, I, be the set of

strict equivalence invariants of (F, G)/%, and let ® be the root range of (F, G)/%
(i- e., the set of all roots of elementary divisors of the associated pencil sSFV — $GV).
The subspace 4 will be called ®—(F,G) -elementary divisor subspace
(®—(F. G)—e. d.s)ifI,={D,V 2, € ®}UI?, where I? denotes the set of zero row
minimal indices of the pencil sFV—3$GV. ®
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3. Deflating subspaces and their properties

Definition (3.1) [1]: Let (F, G)e.%}, , and % be a d-dimensional subspace of R".
Uis a deflating subspace for (F, G) iff dm(F%+G¥)<dim¥ =dm

Before we examine the exact relationship of deflating subspace and the
invariant subspaces defined above, we state the following result.

Proposition (3.1): Let (F, Ge%}, , and % =R" be a d-dimensional subspace.

The restriction pencil (F, G)/ % has no c. m. i. (column minimal indices) in its set I,, of
strict equivalence invariants.

Proof. Let (sF—G)V,V bea basis matrix of %, and let N, {sFV— GV} #{0}.
Then, 3 _v(s) € R"[s]lu(s) #0, such that (sF—G)Vv(s) =0. Define x(s)=V. v(s);
since V has full rank and v(s)#0, then (sF—G) x(s)=0, and, thus, sF—G is
singular, Q. E. D.m

From the above result it is clear that I , may contain f. e. d.,i.e. d.,and r. m. i.

Theorem (3.1): Let (F, G)e<£}, , and let % = R" be a d-dimensional subspace. U
is a deflating subspace iff  isa ® — (F, G) —e.d.s. (i.e, I, is characterized by
e. d. and possibly zero r.m.i.).

Proof. First note that dim(F# + G#)=rank[FV:GV], where V is any
basis matrix of # . Clearly, if ReR"*", |R|#0, then rankgz[RFV:RGV]
=rankg [FV:GV]. We can always choose a special basis ¥ and an R such that
(RFV, RGV) is in the Kronecker form [5]. By proposition (3.1), the possible set of
invariants are e. d. and r. m. i. The typical blocks in (RFV, RGV) are:

[ O .. ] | P O ..:. Y ]
: ¢
[f?. 0
re 1 LO RGV = Tl
I. . (@)
5 s e 0 P L
i | 9
T~ d——.——y— -<————— d e

1 0' ; ) . .
where ([6§]. [7]) (I, J. (), (H 1,) are typical blocks associated withar. m.i. {,a
- g
f.e d. (s—a)f and an i. e. d. §%.
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Because of the block diagonal structure in (3.1) the independent columns in
[REV :RGV] may be found block by block. Thus, by inspection:
(i) 1.:0 | has {+1 independent columns V (eN.
{ ‘[0'31;]
(i) [1_,5.1,(01)] has 7 independent columns V «eC, teN.
(iii) [H,:1,] has g independent columns V¥ geN, and the dim(F#% +G%)
=rank [FV:GV]=rank [RFV:RGV]=Z'_, (+1)+ =0, t;+Z' , q
where ¢ is the total number of non-zero r. m. i., p is the total number of
f. e. d., and u is the total number of infinite el. div.
By setting g=2%!_, {;+X¢_, 1,++Z¢_, q; we have that

(3.2) dim(F % +G¥)=g+1.

However, it is clear from (3.1) that
1
(3.3) d=dim % = X

By (3.2) and (3.3) we have that dm(F¥ +G#%)=g+t=g=d=dim % and
equality holds if and only if there are no non-zero r. m. i. in j  (zero r. m. i. do not
affect the above inequality).

Now if % is deflating, then for dim(F % + G%)=d all r. m. i. must be zero,
and, thus,  isa ® — (F, G) —e. d. s. Conversely, if # isa ® — (F, G) —e. d. s,
then all {; are zero and dim(F 4+ G#)=dim %, i. e, % is deflating subspace.®

Remark (3.1): Let (F, Ge<¥, , and 4 =R" be a d-dimensional subspace.
Then dim(F % + G4 )=dim % =d and equality holds true iff # isa ® — (F, G)
—e. d. s

The above remark demonstrates that in the definition of deflating subspaces
given by Stewart the equality sign should be used instead of “ < since there is no
subspace of R" for which strict inequality “<” holds true. However, the “<”
inequality sign may hold true if the pair (F, G) is not right regular.

Theorem (3.2): Let (F, G)eR"™"x R"" be a matrix pair (not necessarily
regular), and let % be a d-dimensional subspace. Then, dim(F#% + G %) <dim % iff
the total number of non zero row minimal indices is less than total number of column
minimal indices of the restriction pair (F, G)/ %.

Proof. By choossing a special basis ¥ of % and ReR"*", | R|#0, such that
(RFV, RGV) is in Kronecker form, we have that dim(F%+Ga)
=rankgs [RFV:RGV]. The typical blocks in (RFV, RGV) are:
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LRGV =

by)
a
<
I
o~
"\"I‘
~ 10
Vol ~
ed

. . I. ' . .
where ([/,:0]. [0:1,)). ([6;-]. [%]),(I,, J. (), (H,, I,) are typical blocks associated

withacol. m.i.g,ar. m.i. ,a f e d. (s—a)%, and an inf. e. d. 5% Following the same
arguments as in the theorem (3.1) we have by inspection

P t p "
(3.5) dm¥ =d=g+ X (,+ 1)+ £ {;+ £ 7.+ X q,=g+p+r,
i=1 i=1 x=1 v=1

where r=%_, g+Zj-, {;+Z0_, 1, +Z4_ | q,, however, it is clear from (3.4) that
. t P P u
(3.6) dm(F%+G¥%)= X ({;+1)+ Z &+ Z 1, + X q,=t+r.
ji=1 i=1 k=1 v=1
So, dm(F# +Ga)<dim ¥ iff t+r<g+p+r—t=g+p.

4. Perturbation analysis for ®-(F, G) —
invariant subspaces

Given that deflating subspaces of a regular pair (F, G) may also be expressed
for ® —(F, G)-e. d. subspaces. Thus, following the results of Stewart we may state:

Proposition (4.1): Let % be a ®—(F, G)-e. d. subspace. Then, there are
orthogonal matrices K and L such that the first d columns of L span ‘% and

G G F F
{FL— 11 12| gL | 1z |
K'F |:0 G,, 0 F,,
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where Gy, and F,, are d xd matrices.

Proof. Let L=[L,:L,], where L,eR"*¢ with orthonormal columns such
that colspan L)1 =%, and L,eR"*®"~9 such that L=[L, : L,] be orthogonal. Also,
let K,eR"* "9 have orthonormal columns lying in the orthogonal complement of
FU+GU(F%+G#)') and K,eR"*? be chosen such that K=[K,:K,] is
orthogonal.

Since colspan L, = % =colspan(GL,)SG# < F% + G, and because K, is
lying in the orthogonal complement of F# + G we have that K; (GL,)=0.
Following the same arguments we have that K3 (FL,)=0. So,

K! K| GL,- K GL G G
K'GL= _l s o 1 1 1 2 — 11 12 d
[K&]G[L‘ il [K'z GL, KyGL,| |0 Gy |™

Fll Fl2 Fll F12 Gll Glz
K'FL= . thus K'(sF—G)L= . :
[o F,, us  Ki(s )L=s| o F,, 0 G, |m

Also if Aed(F,,, G;,) with corresponding eigenvector _z, then Aec (F, G) with
corresponding eigenvector L, ze /. Next, we shall define an operator which plays
an important role in deriving the error bounds in the perturbation analysis
discussed next.

Definition (4.1.), (1): Let G,, F,eR"™' and G,, F,eR™*™ are fixed matrices.
For any X=[P:QJeR™**, P, QeR™*' we define the operator T on R™** as
follows:

(41) ‘ T: Rmx:l—’Rmxy:VX=[PEQ]ERMX2,

—DT(X)_ =[PGl—GZQEPFl'_FzQ]ER’"sz-

Lemma (4.1): The operator T is linear.®

Lemma (4.2), 1:The operator T is non-singular if and only if: o(F,,G,)
na(F ,, Gy)= Q.
The spectrum above is defined on the associated pencils sF, —G,, sF,—G, in the
usual manner).

Remark (4.1): T is non singular is equivalent that, ¥ [R : S]= YeR'"*? 3 X
=[P :Q]eR™*3 such that:

T(X)=Y«<(PG,—G,Q0=R and PF,—F,0=5)m
Now we define two norms on R™* as follows:

Definition (4.2), [1: VR=[P:Q]eR™*, where P, QeR™*! we define

@2) | Rlz=max{[ Pl [Ql,} and | R[p=max{[[P]f ||Q]}m
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We can easily see that || R ||3, | R || are norms on R™**". As we have seen before
the operator T is determined by the fixed matrices F,, G, F,, G,. Let

(4.3) dif (Fy, Gy; Fa Go) 2| inf T(X) 7.
| X llr=1

Then dif (F,, G,: F,, G,)=0 iff T is non-singular, that is, iff o(F,, G,)
no(F ,, Gy))=0Q . [1]
Also if T is non singular and T(X)=Y, then

(4.4) | X 1= Y lp/dif(Fy, Gy Fa, Go).
The topic examined next is the study of perturbation properties of ® —(F, G)-e. d.
s., when there is uncertainty in the parameters of the pair (F, G). The following
analysis is based on the work of Stewart for deflating subspaces.

Let L=[L,:L,] and K=[K, : K,] be orthgonal matrices with L,, K,eR"™!.

Then if F,,=K4%FL,=0 and G,;=K%GL;=0, the columns of L, span a
®-(F, G)-e. d.s. for sF—G. If F,;and G,, are small but not exactly zero, it 1s

reasonable to ask whether there exists orthogonal matrices K'=[K} : K}] and
L'=[L, ‘L] near K and L, respectively, such that K'5FL} = K'5GL; =0. We select
K’ and L in the form K'=[K]:K}], L'=[L): L], where '

K,=(K,+K,P)I+P' P)"'V? K,=(K,—K,P)(I+PP) '?
4.5)
Ly=(L,+ L,Q)(I+Q'Q)" "%, Ly=(L,—L,@Y(I+QQ) "
where P, QeR@-"x! It is easy shown that K’, L’ are orthogonal.

By setting G,;=K!GL;, F;;=K|FL; Vi, j=1, 2, then conditions K*FL,
=K!GL, =0 leads to the following system:

(4.6) '{PGll—GZZQ=GZI_PGlZQ’ PFanzQ:le_PleQ}.

If we define as before' T([P:Q])=[PG,,—G,,Q:PF,,—F,,0], the system (4.6)
becomes: ‘

(4.7) T(P:Q)=[G,,—PG,,Q:F,,—PF,,0].
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Thus the problem of perturbing K, L into the (deflating) matrices (K’, L) is
reduced to the following equivalent problem : determine under what conditions
the non linear equation (4.7) has a solution. Such conditions are given next.

Proposition (4.2), [1]: Let K=[K, ' K,), L=[L, : L,] be orthogonal matrices.
with K,, L,eR"™!. Let also G;;, F;; be defined as before. Let us also define:

(4.8) ?=1G2:Fai . n=| G'lzf‘Flnz 5, o=dif(F;,, Gy Fj;, Gj,).

If =,=1vyn/6* then there are orthogonal matrices P, QeR"-Dx!  satisfying
[ P:QIr=<y/0(1+2)=7/0. (1+/1—4x, /1 —=2x, + /1 —4x,)<2y/8 such that col-
span (L, + L,Q) is a deflating and thus a ® —(F, G)-e.d.s. for the regular pair (F,G).

Proposition (4.3): If F,, G,, E,, E\eR"™'| F,, G,, E,, E,eR™*™, then dif(G,
+E,, F,+E}; G,+E,, F,+E,)=dif(G,,F,; G,, Fy)—max {|| E, ||,
+IEyllzs 1 EY 2+ 1 ES N2}

Proof. By definition, dif(G, +E,, F,+E}; G,+E,, F,+E,) =inf||[P(G,
+E)—(G,+E;)Q. P(Fy+E)—(F,+E)Q] || [ [P:Q][=1. Let the infimum
be obtained for X =[P : Q],then | P ||y, || Q | =<1. Hence, dif (G, +E,, F,+E}; G,

+E,, Fy+Ey)=|[P(G, + E;)—(G, + E,)Q, P(F,+E\)—(F,+ E%)Q] |IF
=max {|| P(G, + E)—=(G2+E3) Qllpll P(Fy+E}) — (F, + E5) Q || p} Z max
PG, —G,Qllr— I Eyll; = Exll, | PFy—F2Qllp — I Eyll; — | E5 [z} 2max

{1 PG, —G,Q iy, | PFy—F,Q g} —max {|E, |l +IEsl || Ey .+ E) |, =dif
(Gy, Fy; Gy, Fy) —max {[|E; [+ Exllss IE I+ E5 ).} m

The question that arises is to investigate whether there exists a %’ ® —(F’, G')-
e. d. s. of the perturbed pair (F', G')=(F+E,, G+ E) which is close to %, of
course, the essential question is how close such a subspace may be found with
respect to the given perturbation (E,, E}). The answer to this is given next.

Theorem (4.1): Let K=[K,:K,], L=[L,:L,] be orthogonal matrices with
K,, L,eR"*, G;;=K{GL;, F;=K|FL;V i, j=1, 2, and suppose that G,,=F,, =0.
In that case % =colspan L, is an ®—(F, G)-e. d. s. of the pair (F, G). Assume that
E,, E\eR™" and E;=K{E\L;, E;=K{E,L; Vi j=1, 2, g;=max{| Ej; |
| E;jllp}. Let us also assume that y=¢e,,, n=|[G; F5]ll5+¢&,, 6=dif(G,,. F,,;
Gy Fuy)—&y,—&y,. If yn/d*<1/4, then, there are matrices P, QeRn—0x!
satisfying || [P : Q] |z <2y/d such that colspan (L, + L,Q) is a ®—(F, G)-e. d. s. for
S(F+E,)—(G+E)).

Proof. We will give the proof by using the previous proposition to the
problem stated on s(F + E,)—(G + E). If we now denote by G,-j, l?,.j, it has been
denoted by G, F,; in the proposition (4.2), then,

ij
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G,j=Ki{(G+E\)L;=K!GL,+K'E| L;=G;+E}
(4.9) L j=1,2

So G, =G,,+Ey =Ej,, Fy =F; +E;;=E; and 7=||[621F:21]”’F
= || [E%; : Ex ) lp=max {|| ES, ||, I E;, ”,r}=£21- Also = ”[G'lz FG
=max 1GY 2 lla I FY, l2}=max{|| G}, +E{;l, | Fia+E\; |} Smax{| G, |,
+1Efz Nl NF L+ E I Smax{l| Gy lla+ 1 Evalles I Fy 4+ Ers e}
smax {{| Gy, I [ Fiall2b+max{[Ezllp [ Erz e} =1[G2: Fialla+ €12, 6
=dif(F,,, Gll;_ Fy2 Gy)=dif(Fy,+E,,, Gy +E\y; Fyp+Ey, Gyy+Eyy)
2dif(Gyy, Fy: Gy, Fn)—max{ll Eyyila+ 1 Exs o I Evi 2+ 11 Ey I}
2dif(Gyy, Fyy; Gyp Fiy)—max{||Eyy |5 || Eyyll2}—max {| E;; ll5 || Ea o)
=dif(Gy,, Fyy; Gaa Fyp)—gy1—¢y,.

If we set now:

7=, N=|[G12: Fi lll2+&s5 6=dif(Gyy, Fyy; G,y Fan)—&y;—¢2,

then we have (j=y, i<n, ggé):?.ﬁ/gz<y.n/62. So if we suppose now that
v.n/6><1/4, then 3.%/d?<1/4and the theorem (4.1) is valid for the pencil
S(F+E ,)—(G+E' ) ; that means that there are matrices P, Q € R"*"*! such that
the subspace ' =colspan (L, + L,Q) isa®—(F, G)-e. d.s.fors(F+E ;)—(G+E' ),

which of course is a subspace close to the ®—(F, G)-e. d. s. % =colspan L,. The

closeness can be measured by the gap (s %')=gap (colspan L,, colspan,
(Ly + L, Q)).

5. Conclusions

In this paper was shown that for a regular matrix pair (F, G) a d-dimensional
subspace Z (% <= R") is a deflating subspace iff % is a ® —(F, G)-elementary divisor
subspace (i.e., the set of strict equivalence invariants of the restriction pencil (F, G)/%
is characterized by elementary divisors and possibly zero row minimal indices). It
was seen that in the definition of deflating subspaces given by Stewart [1] the
equality sign should be used instead of “ <", since there is no subspace of R" for
which “<” holds true. When the pair (F, G).is not regular it was shown that
dim(F# + G#)<dim % iff the total number of non zero row minimal indices is
less than total number of column minimal indices of the restriction pencil
(F, G)/%. Finally, it was shown that for a regular pair (F, G) and for a # ®—(F,
G)-e. d. s. there exists a ' ®—(F', G')-e. d. s. of the perturbed pair (F’, G')=(F
+E,, G+ E/) which is close to # .
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