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In this work we present a systematic and integrated theory for the scattering of an electromagnetic
wave by a dielectric scatterer which contains a perfect conductor core. We construct the integral
representation for the electric field, and we express the normalized scattering amplitude in a closed
form. Using the low-frequency expansions the scattering problem is reduced to a sequence of potential
problems. We cvaluate the leading terms of the normalized scattering amplitude and the scattering
cross-section in the low-frequency region which are proportional to the third power and the fourth
power of the wave number, respectively.

1. Introduction

The scattering problem in low-freguency region arises when a time harmonic
wave is scattered by a bounded obstacle and the wavelength of the incident
radiation is large compared with the characteristic dimension of the scatterer.

The method of reducing electromagnetic scattering problems to a series of
problems in potential theory was first investigated by Lord Rayleigh. In his
classic paper [8] he examined the scattering of both acoustical and electromagnetic
waves. A significant contribution to this subject also came from Stevenson
who described a method for finding the general term of the electromagnetic field
in low-frequency series expansion and a special technique for evaluating the first
three terms of the series [9, 10]. P. Werner in his papers [13, 14] has established
the validity of the series expansions for the electric and the magnetic field. A main
contribution to electromagnetic scattering in low-frequencies is made by
R. Kleinman. In his paper [6] he rectified some weaknesses to Stevenson’s
procedure. Among other theoretical results for the far-field behaviour of the
electromagnetic field, he derived expressions for the far field coefficient for any
radiating electromagnetic field in terms of the near field [7] and with Asvestas
presented a new method for obtaining solutions to the exterior boundary value
problem [1]. Kleinman also studied in cooperation with other scientists the low-
frequency electromagnetic scattering for scatterers of special shapes. A posteriori
bounds to the error and various properties of the potential solution are derived by
D. Jones [S]. Some important theorems for multiple scattering of electromagne-
tic waves are proved by V. Twersky [12]. The low-frequency scattering of sound
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waves is examined in [2], and the corresponding theory of elastic wave scattering
is studied in [3].

The purpose of this paper is to present a systematic and integrated theory for
the scattering of an electromagnetic wave by a dielectric scatterer which contains
a perfect conductor core. We conclude to a well-posed scattering problem for the
electric field only, that is, we derive the equation which describes the phenomenon;
the boundary conditions and the radiation condition. In this way we achieve to
decouple the electromagnetic scattering problem. We observe that Maxwell’s
equations and the boundary conditions for the dielectric are invariant under the
substitution

E-H, H-—-E, copu

This property does not hold for the boundary condition on the perfect
conductor. Hence, the magnetic field can be evaluated, in a similar way, by solving
a well-posed scattering problem for the magnetic field using the above described
substitution and suitable boundary condition on the core. Thus, we have the
complete solution of the electromagnetic scattering problem.

We give the fundamental dyadic solution, and we construct the integral
representation for the total, incident plus scattered, electric field. Based on the
asymptotic form of the integral representation for the total field, we express the
normalized scattering amplitude in a closed form relation. Using the definition of
the scattering cross-section we derive a relation connecting the cross-section with
the normalized scattering amplitude.

By expanding all the field quantities in power series of the wave number, we
succeed to reduce the scattering problem to a sequence of potential problems
which can be solved recursively by means of appropriate harmonic functions.
Integral representations for every coefficient of the low-frequency expansion, as
well as their asymptotic form, far away from the scatterer, are found. Besides,
particular solutions of the corresponding potential problems, in low-frequency
region, are derived, based on the asymptotic form of the integral representation.

We prove that the leading term approximation, in the low-frequency region,
of the normalized scattering amplitude is proportional to the third power of the
wave number, and that the leading term of the scattering cross-section is
proportional to the fourth power of the wave number.

2. General consideration of the problem

(a) Equations of electrodynamics and the fundamental
dyadic solution. We consider the propagation of electromagnetic waves in a
medium. As it is well known, the electric field & (r, t) and the magnetic field #(r, t)
are governed by the Maxwell’s equations:

,
(1) Vxé&lr, t)=—-;1‘—‘?%t—), V.&(r, 1)=0
(2) V x#(r, t)=e€%;’—t)+a&(r, t), V.#(r, 1)=0,
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where ¢ is the dielectric constant, u the permeability, and ¢ the conductivity of the
medium.

Assuming, without any loss of generality, harmonic time dependence for the
electric and the magnetic field, we have

& (r, t)=E(r)e—iwt o (r, t)=H(r)e""‘",

where w is the angular frequency. In what follows, we can suppress the time
dependence from all field quantities and then, for steady-state waves in not
conductive media (6 =0), the equations corresponding to Egs. (1, 2) are

(3) VxE(r)=puio H(r), V.E()=0
(4) VxH(r)= —c¢io E(r), V.H(r)=0.

Elimination of the H(r) field in Eq. (3) by substitution of Eq. (4) gives us the
following equaticns for the electric field

(5) VxVxE([)—k*E(r)=0, V.E(r)=0,

where k is the propagation constant k = w/c and c is the phase velocity ¢ =(ug) /2.
Similarly, the elimination of the E(r) field in Eq. (4) gives us an equation of the
same type as Eq. (5) for the magnetic field only.

The fundamental dyadic solution I'(r, r’) satisfies the equation

(6) VxVxT(r r)—k*T(r, ¥)= —4nld(r—r),
where r is the position of the observation point, r' is the position of the source

point, T is the identity dyadic, and 4 (r, r') is the three dimensional delta function.
Eq. (6) can be written in the form

(7) L (V2+KH)T(r, r’)=4n<i+vk—zv>5(r—r').
Setting
(8) e, r)= —<1+—Vk—2Y>G(r, r),

Eq. (7) takes the form (i+—vl?2—7) [(V2+k?) G(r, ) +4nd (r, r')] =0. Considering that

G (r, r) must satisfy the following equation
) (V24+k?) G(r, )= —4nd(r—r'),

the tensor I'(r, r’) satisfies Eq. (6).
From Egs. (7, 8, 9) we conclude that

The symbol “~" on the top of a capital letter denotes a dyadic.
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- , \VAvj eiklr—r'l
I(r, r)“"ﬂ'&"p‘) 'I:,—l

Finally, the fundamental dyadic solution is given by

- . ik |r—r'| o o
P )= R E—D® =)+ (1 — ik r ') (1—3%)} -
eils|r_|»'|~
— r—r] I

(b) The scattering problem. We consider a scatterer, which is a
bounded, convex and closed subset of R3, with a smooth boundary S,. We assume
that the scatterer is a dielectric with dielectric constant €, and permeability u,
which lies in an infinite homogeneous isotropic medium ¥, with dielectric
constant ¢, and permeability u,. We also consider that entirely within the
scatterer lies a perfect conductor with smooth boundary S, that is, we consider a
scatterer with a core. We call V, the region between the surfaces S, and S,,.

We assume that a plane electromagnetic wave E™ H™ is incident upon the
obstacle. If E(r), H(r) are the scattered electric and magnetic waves, respectively,
and E; (r), H, (r) the total waves for the spaces V,, the vector fields E™ (r), E(r), E;(r),
H"(r), H;(r), H(r) must satisfy the equations

(10) VXVxwr)-—-Kw(r)=0, reV, i=1, 2
V.w(r)=0,
where 7
() | K=o,

The boundary conditions for the electric field on the surface of the dielectric
S, are given by the equations

nxE,(r)=nxE,(r)
(12) _ , I'eS,.
X (VxE, (r'»=§ﬁ X (V x E, (r')
2

For the magnetic field the boundary conditions on S, can be derived by Egs.
(12) substituting E; with H; and y; with ¢, On the surface of the perfect conductor
Sy the following equations must be satisfied:

nxE,(r)=0
(13) , I'eS,.
A xVxH,(@)=0

On the surface S, of the dielectric the boundary condition n LE ()
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£y - . . e
="2n.E,(r), reS, must alsc be satisfied. This condition is a consequence of the
&

1
integral relation

(14) [A.E(r)dsS(r)=0,
S

where S is any closed surface surrounding a free charges region. Equation (14) can
easily be derived by Maxwell’s equation [11].
The incident wave has the form

1 ‘ ~ A . 172 %
E"(r)= b e* llk.r, H" (r)=(k x b) (L_l) etk kT .
1

where k is the unit vector in the direction of propagation, b is the unit polarization

vector for the electric field, b. k=0, and k x b is the unit polarization vector for the
magnetic field.

The scattered fields E(r), H(r) satisfy the radiation condition due to
Muiller-Silver

E(r)

(15) limrx{Vx(E(r) H(r)

1 .
ey H(r))l+lklr(

)=0

uniformly over all directions.
So we achieve to define two well-posed scattering problems one for the electric
field and one for the magnetic field, which can be solved independently.

3. Integral representation

In this section we will construct the integral representation of the electric field
for the region outside the scatterer. As it is well known, the integral
representations of the scattering problems contain all the informations about the
boundary conditions, the radiation conditions, the source conditions, and the
P. D. E. which govern the phenomena. We examine the electric field only because
as we have already seen the determination of the electric field suffices for the
evalution of the total electromagnetic field.

The scattered field E (r) admits the following representation in terms of the
electric field only [see Appendix]:

E(r) =Zl;t—sf (VXE().mxT(r, r)—mxET).V, x(r, r)}ds(r),

where the radiation condition given by Eq. (15) is included. Since the incident
electric field belongs to the kernel of the differential operator of the problem, we
have that

[{VXE"(r).axT(r, r)—@xE"(r).V,xT(r, r)}dS()=0.

5,
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Using the last two equations and the fact that the total field E, (r) for the region
V is the superposition of the incident and the scattered field we conclude that

. 1 P - 2
E,(r)=E" (r)+E f \VXE,(r).(nxT'(r, r))—(nxE, (r). V. xI'(r, r')}dS(r).
. Sl
Introducing the boundary conditions given by Egs. (12), we have

—En) 4L [ Y. @GxTE
. E,(r)=E (r)+4nsjl{#2V><E2(r).(nxl“(r, r))
—(mxE,(r).V,xT'(r, r)} dS (r')..

In order to incorporate the boundary condition which is satisfied on the surface of
the core we work as follows. %

First, applying the dyadic form of Green identity [11] on E,(r), I'(r,r)in V,
and using that E,(r) and: I'(r, r) are solutions of Eq. (10) in V, and V,,
respectively, we conclude that :

-

J AVXE,(r).axT(r, r)—(xE,(r).V,xT(r, 1)} dS(r)

(17) % i
=(k?—k?) [ E,(r).T @, ¥)dU (r).
VZ

Second, using the dyadic form of Gauss theorem, we have the relation

f (hxE,(r).V,xT'(r, r)dS(r)= j' VXE,(r).V,xT(r, r)dU (r)
. V2

S1-5g

(18) :
—k3 [ E,(r).T(r, ¥)dU ().
VZ

Third, we introduce the boundary condition satisfied on the surface of the
perfect conductor S, given by Eq. (13) in Egs. (17, 18).

Finally, using the above-described ;substitution, we can replace the surface
integrals on S, in Eq. (16) with surface integrals on S, and volume integrals in V,.
Taking into account the relation given by Eq. (11) in Eq. (16), we conclude that

El(r)=Ein(r)+iﬂ [VXE,(r).(nxT(r, r)ds(r)
o 4r H S,

2

(19)
—4L _f {(8—2—1)kf E,(r).I(, r’)+(l—ﬂ)VxEz(r').V,,xi"(r, r')}dU (r').
Ty, & K2

So, we achieve to express the electric field E, (r) in terms of a surface integral
on §, and a volume integral of the region contained between S, and S, of the
electric field E, (r).
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4. Far field behaviour

The scattering theory deals with the influence of the discontinuities of the
medium to the wave propagation. The effect of the scatterer on the propagation of
the incident wave is measured by the amount of energy that the scatterer receives
from the incident wave and reradiates in all directions. The knowledge of the
scattering cross-section is of specific interest as a measure of the energy
disturbance caused by the scatterer. Another measure which also is of interest is
the normalized scattering amplitude because it describes the behaviour of the
scattered wave in the region of radiation and through it we also succeed to
evaluate the scattering cross-section.Using the above magnitudes, to a certain
extend, we can explain the mechanism of energy transfered during the scattering
process.

a) Normalized scattering amplitude. We define as normalized or
dimensionless scattering amplitude the coefficient of the zeroth order spherical
Hankel function of the first kind in the asymptotic form of the scattered field. So
we have that it satisfies the relation

. = 1
(20) EM=g® Wh(k)+0(3). rco

where T, k are the unit vectors in the directions of observation and propagation,
respectively. &

In order to conclude in closed form for g(r, k) we use the asymptotic form of the
integral representation for the scattered electric field. .
Using the asymptotic relations |[r—r'|=r—r.r+0(1/r), r—oo, (r—r)/|r—r|
=r1+0(1/r), r— o0, we conclude to the following asymptotic forms for the dyadic
I'(r, ) and V., xI'(r, r'), as r—oo:

I, r)=—(1-t@ne * " eT+0(—2)

- ~ _a = iky e 1
V. xT(r, ¥)=Ixre #fr L 4

Thus, introducing the two last equations in Eq. (19) we have that the scattered
field admits the following representation, as r—co:

E(r)=E, (r)—E" (r)=3‘; {—ik, ;‘j—‘ Jvx E,(r).(ax(I—T®r)e 7" dS(r)
2 5

1) *C‘f — )ik [ Ey@).(-F@He~Mir dU @)

2

ik.r

-~ s g 1
(1=K [ VX B, @) (xBe™™dU @) o+ 0()
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Thus, from Egs. (20, 21) the normalized scattering amplitude is given by
~ 1 ou R Ra e
glr, k)=—{—ik,~* [VXE,(r).(ax(I—r®") e * 7 rds(r)
4n Ha s,

(22)
+(EZ <)k} [ E,(r).A—t@T) e * " dU (1)
VZ

€y
H1=2K [ VB, ). Ax et du @)
2 Vz

(b) Scattering cross-section. We define as scattering cross-section the
ratio of the time average rate (over a period) at which energy is scattered by the
body to the corresponding time average rate at which the energy of the incident
wave crosses a unit area normal to the direction of propagation. Because of the
particular normalization of the scattering cross-section, as total scattered energy
measured in incident energy per unit area, it has the dimensions of area and this
fact justifies the characterization “cross-section”.

In order to evaluate the scattering cross-section in electrodynamics we use
the Poynting vector which is defined as the vector flux Re E(r)e ' x Re
H(r)e™"". Using the above definition for the scattering cross-section, we have that
the time averaged Poynting vector is given by

1 1. E*()xVxE(@)
T

Re E(r)e““"xReH(r)e““"dt=5Re{ }

Oty Ny

OJTH

where E*(r) is the complex conjugate of E (r).

Thus, the total energy scattered by the scatterer is given by a surface integral
of the scattered vector flux over a large sphere S,, r> 1 enclosing the scatterer. We
can do this substitution because the space between the surface of the scatterer and
the surface of the sphere has no singularities. So, we can push the sphere so far
that the asymptotic field can be used. Besides, the radial symmetry of S, is also
exploited. Finally, we have

1 E*r)xVxE(r), ~
5 Res.fr{—T#l———}.ndS(r)
(23)
1 A L g, ket 1

-~

r

PdQ@=s—— [ |g@ K)2dQ(F)

inw 2wpky iy
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Similarly, the incident energy which crosses the unit area, can be derived from the
incident vector flux, and we take

1| (E"(r)*xVxE"(r)| k,

Z|Re —

24 =
(24) 2 iop, 2wp,

So, by definition, using Egs. (23, 24), we conclude that the scattering cross-section
is equal to

1 - A =
(25) o=— [ lg(r, k)|*dQ(r).
ki wi=1

For the normalized scattering amplitude the reciprocity and the scattering
theorem have been proved by V. Twersky [12]. Also, for the scattering cross-
section holds the well-known optical theorem [4, 12].

5. Derivation of the approximations

(a) The electric field. Since the solutions of the vector Helmholtz
equation considered as functions of the wavenumber are analytic in a
neighborhood of zero [13], we can expand them in a convergent power series. So
we have for the electric fields E;(r), i=1, 2 the expansions ‘

(iky)"

(26) E(r)= % o(r), reV,, i=1, 2.

Inserting the expansions of Eq. (26) into Eq. (10) and equating equal powers of k,,
the following sequence of partial differential equations is obtained:

VxVx®P(r)+nn—1)ymao®P ,(r)=0

(27) ,
V.0V (r)=0, n=0,1, 2,..., reV, i=1, 2,
where
1, for i=1
m;= .
Ha 2 for i=2.
Hi&y

The boundary conditions given by Egs. (12, 13) are transformed into the
boundary conditions

Ax O () =Ax DD (r), nx(VxOD(E)="Lhx(Vxd2 (), res,
23]



Elcctromagnctic Scattering Theory for a Diclectric... 73

on the surface of the dielectric and
nx O (r')=0, resS,

on the surface of the perfect conductor.
For the incident electric wave we have the convergent power series of k,:
. ~ © (jk ) ~
(28) E"(r)=b X u(k..r)".
n=0 n!

The fundamental dyadic T'(r, r) admits the expansion

- © (ik,)" ~
(29) Fe =z ¢ ',) Va(E, ¥,
n=0 N:

- ' n—1 - sl r_rr )
where 7,(r, r’)=—%{(n+l)[—(n—l)(rl+)_®;(,lz—)} and the dyadic
V. xT'(r, r) has the expansion

. < (ik)"
(30) V.xE@ r)= = ('n‘,) 5 (x, 1),
n=0 .

where 3,(r, ¥)=(n—1) |(r—r|" 3@ —r)x1. Substituting the series expansions
given by the relations (26, 28, 29, 30) into the integral formula given by Eq. (19),
reordering terms, interchanging summation, and integration, and equating like
powers of ik,, we have the following resuit:

2p=0

m‘,"(r)%B(l‘(.r)w;l;% z (Z)I (Vx @2 (1)
sO
. 1 »
(1) @xTa-p(r F)ASE) 44— ZO(Z)VI {(?—l)p(p—l)wzflz(r')
pP= 2 1

e (6 ) —(1— :i)v x ®Rr). 5, (r, r)}dUT).
2

In order to have the asymptotic integral representation for the n-th coefficient we
use the fact that y,(r, r')=0(1/r), J,(r, r')=0(1/r), r—oo. Thus, the asymptotic
representation can be derived from the integral relation (31) if we omit the n-th
term in the right hand side, which is of the order of 1/r. By substitution of the
nonvanishing part of the asymptotic representation in Eq. (27), as r—oo, we
conclude that it provide a particular solution of the nonhomogeneous equation.
So the solution of Eq. (27) can be written as the sum of this particular solution
plus a solution of the homogeneous equation, which must also be of the order of
1/r, as r—co.

In low-frequencies the magnetic field assumes the series expansions [14]:
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= (iky)
H,(r)= = u\v;“(nr), reV, i=1, 2.

! 0 n!
In order to evaluate the coefficient P’ (r) from Maxwell’'s equations and the
series expansions given by Eq. (26) we conclude that

12 .
(32) vXq>g>(r)=(m,.5£-'-) O (), reV, i=1, 2.

(b) The scattering amplitude. In order to derive the low-frequency
expansion for the scattering amplitude the expansion

e—ikitr — ; (= D"k )" vy )(n )

n=0

and the series given by Eq. (26) are substituted into Eq. (22). So, we obtain

Sk Uopy 2 (k)" n
l‘,k=——— Z—————Z -~ 1) VX(DSIZ_) rl
g l=— 2t TN ()= )
~ ~ A __a ~ 1 © (ik n+3
(ax ([ —F@1) (F.rPdSE)—— (2 —1) T (iky)
4n e, n=0 n!

5 (Z) (—1p [ 2 (). A—F®T) (r.rydU (r)
= J

U " 5 <n> (=1 [ Vx®R,(r).(AxT) (F.rydU (r).
=0 \P v,

In order to find the leading term for the scattering amplitude we observe that the
coefficient of (ik,) is a surface integral on S, which contains the term V x ®§ (r).
Because @4 (r) is solution of the electrostatic problem it is the gradient of a
function. So, we have that V x ®{ (r) is equal to zero. Thus, the coefficient of (ik,)
is equal to zero. The coefficient of (ik,)? is the surface integral 1/4x [s V x @@ (r')
.(n x 1—r®r))dS (r') (another volume integral in V, containing V x ®{? (r) is equal
to zero). From Maxwell’s Eq. (3) we have that the rotation of the electric field is
proportional to the magnetic field. So, the integral which includes V x ®{ (r) is
proportional to a surface integral of the form jso‘l’{f’ (r').ndS(r'). But for any
closed surface surrounding a free charges region integrals of the electric or the
magnetic field of this type are equal to zero [11]. So, the coefficient of the second
order term in low-frequency expansion for the scattering amplitude is equal to
zero. Thus, the normalized scattering amplitude is of 0(k3), as k, —0. In particular,
the leading term approximation as k,—0 is
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g(F, k)=(ik,)? {— — =

_[V O (r'). (n x (T-T®T))dS(r)

1
+4n 0 j V x ®Z(r). (b x (I-t®1)). (F.r)dS(r)

- ;‘,(“: —1) [ O (r).A—F@NdU (r)

V2

—7-15(]__ ij(D‘Z’(r) (IxT)dU (r')} +0(k}), k,—O0.

(c) The scattering cross- section. In order to evaluate the leading
term approximation for the scattering cross-section we introduce in Eq. (25) the

form of g(r, k), and so we have that the leading term approximation for the
scattering cross-section in low- frequency region i1s given by the equation

1

o=k}{— San lj'Vx(l)‘z’(r)xndS(r)l2

1 g ’ 2)0en L S N2 7 /‘% 2 , 2
b**z“j r'Q(V x OPr') x n)dS(r') ||* + —— "3|f(VX¢’( (r')xn) . rdS(r)|
607 60m pus 3,

(33) +— (2o 12| [ OPEUUE)+—(1 —L12] [V x 0@(r)au(r)?
67 ¢, v, 6n K2’ v,
! H FZ (2), (2)(p’ ’
l)ijtb (r') x ndS(r') . | ®F(r)dU(r)
6n s s, v,
+]— ,u, )f(Vx®‘2’(r)xn)xrdS j V x @P(r')dU(r')} + O(k$),
6n uz o,

where the norm of a dyadic is defined as l|a®bllz—23] i(ab)?.
We derive Eq. (32) using the formulae

j rQf=0, [ F@HAD=TT, | T@I@HAT)=00080,
Irl=1 Ir|=1 |ri=1
A ~  4n i 3 o s A, x 3
[} r®r®r®rdQ(r)=E{i®l+ T e,®e¢;Q¢,Qe;+ Ze®l®e}
=1 ij=1 i=

performing the necessary contractions, and omitting all terms that have been
evaluated equal to zero.
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6. Conclusions

In the preceding work we construct the integral representation for the
solution of the electromagnetic scattering problem when the scatterer is a
dielectric containing a perfect conductor core, and we develop a systematic
procedure for the formulation of the above scattering problem in the
low-frequency region.

Decoupling the electric from the magnetic field we construct integral
representation for the electric field in terms of the electric field only, and we also
give closed form for the normalized scattering amplitude.

Expanding in series of the wave number, we reduce the scattering problem in
a series of well-posed potential problems which can be solved recursively.
We give the integral representation for the n-th order coefficient of the
electric field. The leading term_ approximation of the scaterring amplitude is
proportional to ki, as k;—0 and depends on ®,, ®,, ®,. The leading term
approximation of the scattering cross-section is of the fourth order of the wave
number, which is in agreement with Rayleigh’s law.

In order to evaluate the magnetic field a similar problem can be constructed
and solved. But in low-frequency the magnetic field coefficients can be directly
evaluated by using Eq. (32). Finally, we will enumerate the special problems which
can be obtained as degenerate cases of the most general present problem when
there is a particular relation between the material constants or in geometrical
degenerate cases.

a) When we have equality of the dielectric constants and the permeabilities
of the spaces V| and V,, then no scattering occurs on S, and the scatterer is the
core S,. The results in this case are the same as in the case where the scatterer is a
perfect conductor. Considering also S,=S, and ¢, =u, =0, we conclude to the
same degenerate case.

b) When the material constants ¢, u are not equal but the volume of the core
is equal to zero, we can derive the case where the scatterer is a dielectric.

Appendix
In order to construct the integral representation of the solution u(r) for an
infinite region we use the dyadic form of Green theorem:

[{VxVxur). T, r)—ur). VxVx T, ')} dU(r)
Ay
=[{{(nxu(r) .V, xI(r, )=V xu) . @xI(r, r)}dsr),
S

where n is the exterior unit normal vector on S. Applying the above formula for a
volume V bounded by the surface S of the scatterer and_the surface of a sphere S,,
r—> and using the defining equations of u(r) and T (r, r'), we get

4rl . fu(r)d(r—r)dU(r)= [ {(axu(r)) .V.xI(r, r)
Vv S+Sw

(A2) L
—V xur). (nxI(r, r))}dS(r). .
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But for the sphere S, we have that the surface integral is equal to zero by the
radiation condition. Changing the normal on S from n to —n, we get the integral
representation

(A3) ) =4—17£ g (Vxu(r).(x T, r)—@xu(r) . V. x T, r)}dSr).
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