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Let <X, dx> and (Y, dy) be metric spaces, and let h, denote Hausdorff distance in X x Y,
induced by the metrix p on X x Y, given by p[(x;. y,), (x5, y2)l=max {dy.(x,. X5). dy(y,, ¥,)}. We may
regard C(X, Y) as a metric subspace of the closed subsets of X x Y with distance h,. Here we study
completeness criteria for closed subsets of the function space.

Let C(X, Y) denote the continuous functions from a metric space (X, dy) to
a metric space (Y, dy). We denote uniform distance in C(X, Y) by d,;
that is,

d(f. 9)= sup dy[f(x), g(x)].

xe X

Here we consider a related metric on C(X, Y), which is equivalent to d, whenever
X is compact [9]. Let h, denote Hausdorff distance (see, e.g., [2] or [7])
between closed nonempty subsets of X x Y, induced by the .box metric p on
X x Y, defined by the formula

pl(xys yi) (x2 .Vz)]=max{dx(xp x,), dy(yy, YZ)}-

If we identify members of C(X, Y) with their graphs, then h, defines an infinite
valued metric on C(X, Y), which we denote by d,. Of course, any other metric
compatible with the product uniformity on X x Y yields a Hausdorff metric
uniformly equivalent to d, on C(X, Y). From the point of view of constructive
approximation theory, such spaces have been thoroughly studied by B. Penkov,
V. Popov,BlL Sendov, V. Veselinov and their associates in Sofia (see, €. g.,
[10], [12] and [14]). This author’s interest in Hausdorff distance as applied to
functions is quite different (see, €. g., [3], [4], [S], and [6]). In the sequel we retain the
notation of [6]: (i) CL(X) denotes the collection of closed nonempty subsets of a
metric space X (ii), S,[K] denotes the union of all open &-balls whose centers run
over a set K in a metric space (iii), LsC, denotes the set of points each
neighborhood of which meets infinitely many terms of a sequence {C,} of sets in a
metric space.
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Although d, and d, are equivalent when X is compact, they fail except in
degenerate situations to be uniformly equivalent. Most conspicuously, the
completeness of (C(X, Y), d,> for X compact and Y complete does not ensure
completeness for (C(X, Y), d,) (see Example 1 of [6]). In this setting it is not hard
to characterize those d,-closed subsets of C(X, Y) which are d,-complete [6]

Theorem 1. Let (X, dy) be a compact metric space, and let {Y, dy)> be a
complete metric space. Suppose Q< C(X, Y) is d,-closed. The following are
equivalent:

(1) Q is d,-complete .

(2) Each d,-Cauchy sequence in Q is d,-Cauchy

(3) Whenever {f,} is a sequence in Q h,-convergent to a closed set E, then E is
the graph of a function from X to Y. '

The purpose of this note is to determine if conditions (2) and (3) serve more
generally as completeness criteria for d,-closed subsets of C(X, Y). We first
dispense with condition (2).

Theorem 2. Let (X, dy) and {Y, dy) be metric spaces. Then condition (2) of
Theorem 1 characterrizes those d,-closed subsets of C(X, Y) that are complete if and
only if Y.is complete and d, and d, are equivalent metrics on C(X, Y).

Proof. First, suppose Y is complete, and d, and d, are equivalent metrics.
Let Q be a d,-closed subset of C(X, Y) for which condition (2) of Theorem 1 holds.

To see that Q is d,-complete, let {f,} be a d,-Cauchy sequence in Q. By condition
(2) and the completeness of Y, {f,} must be d,-convergent to a continuous
function f. Since d, and d, are equivalent and Q is d,-closed, {f,} d,-converges to
an element of Q. On the other hand, if Q is d,-complete, each d,-Cauchy sequence
in Q must be d,-convergent, ergo, d,-Cauchy. Thus, condition (2) holds for Q.

Conversely, we assume condition (2) serves as a completeness criterion for d,-
closed subsets of C(X, Y). Suppose Y fails to complete. Let {y,} be a
nonconvergent Cauchy sequence in Y. For each neZ™* let f, : X—Y map each x in
X to y,. Then, Q={f, : neZ*} is d,-closed, satisfies condition (2) of Theorem 1,
but fails to be d,-complete, a contradiction. To show d, and d, define the same
topology on Q, we need only show that d, is at least as strong as d,. Let {f,} d,-
converge to f. Since Q= {f}U{f, : neZ"} is d,-complete and (1) implies (2), {f,} is
d,-Cauchy. We know now that Y is complete; so, there exists geC(X, Y) for which
lim,_ . d,(f,. 9)=0. Since d,(f,. 9)=d,(f,. g). we conclude that {f,} d,-converges to
g. and by the uniqueness of d,-limits, we obtain f=g. Thus, {f,} d,-converges to f.

Theorem 2 raises as many questions as it answers. Are there noncompact X
for which d, and d, are equivalent? If so, can we describe them concretely? The
answer to both questions is yes. If Y has at least one nontrivial path component,
then d, and d, are equivalent on C(X, Y) if and only if (a) the set X’ of limit points
of X is compact, and (b) for each £>0 the set of points in X whose distance from
X' exceeds ¢ is uniformly discrete [S]. Such spaces, first studied by M. Atsuji[1],
have many other interesting characterizations. Most importantly, they are the
spaces on which each continuous function is uniformly continuous. Called U C or
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Lebesgue spaces in the literature, such spaces are complete, but need not be
locally compact. Further results on these spaces can be found in J. Rainwater
[11], W. Waterhouse [15], and Gh. Toader [13].

Evidently, condition (1) of Theorem 1 always implies condition (3), with no
assumptions on X or Y whatsoever. What about the converse? The situation is
hopeless if there exists a d,-Cauchy sequence {f,} in C(X, Y) that fails to h,-
converge to anything in CL(XxY): Q={f,: neZ"} would be a d,-closed
noncomplete subset of C(X, Y) satisfying condition (3). To ensure that no such
sequence exists, we can require that X and Y be complete. As a result, (X x Y, p)
will be complete whence (CL(X x Y, h,> is complete [7]. Actually, there is very
little loss of generality in making this assumption, a technical point that we shall
return to at the end of this note.

In such a setting, condition (3) is equivalent to the following usually stronger
condition: each d,-Cauchy sequence in Q h,-converges to a function with a closed
graph. Thus, for X and Y complete condition (3) will guarantee completeness if
and only if C(X, Y) is a closed subset of the functions from X to Y with closed
graph (when topologized by Hausdorff distance). Such functions are the subject of
a recent monograph of T. Hamlett and L. Herrington [8].

Example 1. There exist complete metric spaces X and Y for which
C(X, Y)is not an h,-closed subset of the functions from X to Y with closed graph.
Let L be the Banach space of bounded real sequences with norm |||
=sup {|x]| : ieZ*}. For each ieZ" let e,€L be defined by e(i)=1 and e(j)=0 for
each j#i. For each i let W, denote the line segment in L joining ¢; to the origin,
and let X=Y=[( )<, W, We define f: X—Y as follows: on each segment W, let

1
the graph of f consist of the two line segments connecting (0, 0), (- ¢;, ¢;), and (e;, ¢;)
‘ i

1
is succession. Clearly, lim,_ . f(~ ;) #/(0); so, f¢C(X, Y). However, if x=0 then fis
1

continuous at x, and if lim,_ , x, =0, then either lim,__f(x,)=0 or lim,_,, f(x;)
does not exist. Thus, f has a closed graph. Now for each neZ™ let f,eC(X, Y) be
the function that agrees with fon W, for i<n and whose graph when restricted to

. 1
W, for i>n consists of the two line segments connecting (0, 0), (—e;. ¢;), and (e;, e;)
n

in succession. We leave to the reader to verify that for each n h,(f, f)=1/n.

We now proceed with some positive results.

Theorem 3. Let X and Y be complete metric spaces. Then condition (3) of
Theorem | characterizes d,-completeness for d,-closed subsets of C(X, Y) if any of
the following conditions hold:

(a) Y is compact

(b) Y is locally compact and X is locally connected

(¢) X is locally compact.
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Proof By the previous remarks we need to show that each condition
implies that C(X, Y) is an h,-closed subset of the functions from X to Y with
closed graph. Condition (a) works because a function into a compact space is
continuous if and only if its graph is closed (see, €. g., [2]). To see that condition (b)
is sufficient, suppose {f,} = C(X, Y) h,-converges to a function with closed graph f
and f'is discontinuous at x = Xq- Choose £>0 and a sequence {x,} convergent‘to
X such that for each n dy(f(x,), f(x,)) > 2¢. Since Y is locally compact, there exists

d<e such that {y : dy(y, f(x,))=05} is compact. For each neZ™* choose 6, <3 such
that each two points in S; [x,] are connected in S, ,[x,]. We claim (*): for each
keZ* there exists n>k and Pn€S 1 lxo] such that dy(f,(p,). f(xo))=0. Pick n>k so
large that both dx(x,, xo)<1/26, and h,(f,. /)< 1/26,. By the second condition we
can find {w,, k,} =X satisfying

Plen D). (o DI <5 5,

and
1
p[(W,', j;l(wn))' (xO’ f(xo)) <56k’

Since {z,, w,} < S8;,[xo). there exists a connected subset C of S, ,[x,] containing {z,,
w,}. Since J, <8 <e, we have dy(f,(z,), f(x0)) > ar.d dy(f(w,), f(xo)) <. Therefore,
the connected set f,(C) must meet {y: dy(f(x,),y)=0};:s0, there exists
p.£C <S8, [x0] such that dy(f,(p,). f(x,)) = 06. This establishes (*). Hence, we can find
an increasing sequence of integers {n,} and a sequence {p,,k} convergent to x, such
that dy(f,, (pn;).f(xo))=0 for each positive integer k. Since {y : dy(y, f(x,))=6} is a
compact set, there exists y, in this set such that (x,, yo)eLsf,. We conclude that f
= Lsf, is not the graph of a function, a contradiction.

To show that condition (c) is sufficient, we need only show that if
{f,} ©C(X, Y) converges to a function f with closed graph, then for each x, in X
there exists 6> 0 such that the restriction of f'to. {x : dy(x, xo)<J} has compact
graph. This, of course, is a stronger requirement than that f'should have a locally
compact graph, a condition that does not ensure continuity. Choose & >0 such
that {x : dy(x, xo) <26} is compact. Since E={(x, f(x)) : dx(x, xo)<é} is a closed
subset of the complete metric space {x : dy(x, x,) <6} x Y, it is complete. To show
E is totally bounded, let ¢ in (0,20) be arbitrary and choose neZ™* for which h,(f,.

1 .
f)<§£. Since F={(x, f,(x)) : dx(x, x,)<26} is totally bounded, there is a finite

1
subset F* of F satisfying F < S,,[F*]. Since both §e<6 and f<S§,,[f,] hold, we

have EcS,,[E]l<S,[F*].

Example 1 shows that the local compactness requirements in conditions
(b) and (c) connot be omitted. The construction of an example showing that
“locally connected” cannot be replaced by “connected” in condition (b) provided
the author with a minor headache, which he will now share with the reader.

6 Mathematica Balkanica, 1, 1988
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Example 2. Let L and {e; : ieZ"} be as described in Example 1. For each
ieZ* let M, be the starshaped set consisting of all line segments joining the points

1 1 . .
of {0, e,;, §e2i' gez,-,...}to e,i-1- Set X =02, M itis clear that X is a complete

connected subspace of L. We will produce a sequence {f,} =C(X. R) h,-convergent
to a function f with closed graph that is not continuous. We describe how each f,
is defined on M, i=1, 2, 3,... We will always let f,(0)=f,(e;;—,)=0, and on

1
{EeZi: keZ*} we set

1 i if k <min{n, i}
f"(Eez")_{ 0 otherwise

We extend f, linearly on each of the segments that make up M;; since f, is zero in
a neighborhood of the origin, the result is a globally defined continuous function.
We describe f similarly: on M, let f(0)=f(e,;-)=0, and set

1 iif k=i
f(EeZi)={ 0 otherwise

As with each f, the values of f at remaining points of M, are obtained through
linear extension. Clearly, f is continuous on M, and since M; contains no limit
points of X — M, other that the origin, fis continuous on X —{0}. Now if i and j
are arbitrary positive integers, it is easy to check that the point on the line

1 [ . 1 1 :
segment from —e,; to e,; ; nearest the origin has norm T]—;E,—. Hence, if keZ™*
J J

1 . s .
and | x| <§E' then either f(x)=0 or for some integers i and j with i=j=k the
point x lies on the line segment joining j—,e2,~ to e,;_,. Since this line segment last
) 1 .
intercepts {z: ||zl|=ﬁ} at the point

2k—1 1
Zo= g Geat

2k ﬁeu—nr

. 1
we conclude that x is between -e,; and z,, so that
J

2k—1 1
)= == izk——
S(x)= f(zo) 2k = 3
Thus, if {x,} isasequence in X convergent to the origin such that lim,_, ., f(x)#0,
then the limit does not exist. Hence, f has a closed graph. It is left to the reader to
convince himself that lim,_  h,(f, f,)=0.
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Finally, we justify confining our search for metric spaces X and Y for which
condition (3) of Theorem 1 characterizes d,-completeness for d,-closed subsets of
C(X, Y) to complete metric spaces.

Theorem 4. Let (X, dy) and {Y, dy) be metric spaces for whzch condition (3) of
Theorem 1 serves as a completeness criterion for d,-closed subsets of C(X, Y); then
Y is complete; and if C([0, 1], Y) is nontrivial, then X is also complete.

Proof. Suppose Y is not complete. Let {y,} be a Cauchy sequence in Y that
fails to converge. If for each n we let f, : X —Y be the constant function with each
value equal to y,, then Q={f, : neZ*} is a d,-closed subset of C(X, Y) satisfying
condition (3) vacuously that is not d,-complete. This violates the hypotheses of
the theorem.

If X is not complete and Y has some nontrivial path component, we again
seek to produce a d,-Cauchy sequence {f,} in C(X, Y) that is not h,-convergent
to any set; thus, Q={f,; neZ"} will be a d,-closed subset of C(X, Y) satisfying
condition (3) vacuously, but will not be d,-complete. Let {x,,} be a nonconvergent
Cauchy sequence in X with distinct terms. Since {x, : neZ*} has no limit points
in X, we can find for each n an ¢,>0 such that the collection {S, Ixa] 2 neZ™} is
pairwise disjoint. Since C([0, 1], Y) is nontrivial, there exist distinct points a and b
in Y and 0eC (0, 1, Y) such that 0(0) =a and 0(1)=b. We now distinguish two
cases: (1) infinitely many x, are isolated points of X ; (2) finitely many x, are
isolated points of X. In the first case, by passing to a subsequence we can assume
each x, is isolated; without loss of generality we can also assume for-each n that
S, [xa]={x,}. I for each n we let f,(x)=a if x=x, and f,(x) =b otherwise, then {,}
is d2 Cauchy. However, {f,}h,-converges to no closed subset of X x Y; if it d1d
the limit set would necessarily be Lsf,=X x {b}, but h,(f,. X x {b})=d(a, b) for
each n. In the second case, by passing to a subsequence, we can assume no x,, is an
isolated point of X. The second lemma of [5] allows us to construct for each neZ+
a continuous f, : X—-Y satisfying:

(a) S8, [x) <0 ([0, 1)<S, [4(S, [x,])]
(b) fi(x)=b whenever dy(x, x,)=¢,.

Since for each n and j we have ¢,<dy(x, xj;), we conclude that d,(f,. f)
<3dx(x,. xj). Thus, {f,} is d,-Cauchy, and the previous argument indicates that
{f,} fails to h,-converge to any closed subset of X x Y.
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