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Local Multiplier Criteria in Banach Spaces

*R. J. Nessel, E. van Wickeren

Presented by Bl. Sendov

The main purpose of this paper is to establish those local multiplier criteria, already used in our
previous work in connection with a number of applications in approximation theory and numerical
analysis. To this end we study the Banach algebra BV, ,(a, b) of functions  for which 25 1de (el is

finite for some 0<a<b < oo and integer j=0. Thereby it is essential to follow up the dependence upon
the parameters a, b in order to derive uniform bounds in, e. g., Wiener-type results. The local multiplier
criteria are then shown on the basis of an appropriate Riesz summability condition. This is indeed
done in terms of a concept for multipliers in Banach spaces which not only generalizes, but sim lifies
the one developed previously. In fact, the present approach turns out to be more readily accessible to
applications.

1. Introduction

The main purpose of this paper is to establish those local multiplier criteria,
already used in [13], in connection with a number of applications in
approximation theory and numerical analysis.

To this end, Section 2 studies the Banach algebra BV, ,(a, b) of functions t
for which for some integer j=0 (cf. (2.2))

(1.1) bj— ] de(t)| < co.

a+

The treatment may be considered as an extension of results, obtained previously
gee [3; 4; 5; 14; 17; 18] and the literature cited there), for the classes
V;+1(0, ), now localized to an arbitrary (small) interval (a, b), 0Sa<b<= co.
Though the weight ¢/ in the moment (1.1) only has critical points at a=0 and
b= o (for j=1), it is essentially to follow up the dependence upon the parameters
a, b to derive uniform bounds, for example, in the Wiener-type result of Corollary
2.12. In this connection, let us emphasize that we are mainly interested in the
situation for j=1 since, from the point of view of applications, the case j=0 is a
trivial one (though it causes some technical difficulties in our approach, cf.
Remark 2.7, 3.2). Let us also mention that extensions to fractional values of j=0
may be worked out along lines, developed in [17] for the classes BV,;.,(0, ).
On the basis of an appropriate Riesz summability condition scf. 3.5,6)), the
results of Section 2 are then used in Section 3 to derive (local) multiplier criteria
(cf. Theorem 3.3). This is indeed done in terms of a concept for multipliers in
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Banach spaces which not only generalizes, but simplifies the one developed
previously (see [S; 14 ; 19, p. 115 ff] and the literature cited there). In fact, the
present approach is more readily accessible to applications, the latter aspect being
illustrated in Section 4.

The authors would like to express their sincere gratitude to Priv. -Doz. Dr.
W. Dickmeis for his critical reading of the manuscript and many valuable
suggestions. This work was supported by Deutsche Forschungsgemeinschaft
Grant No Ne 171/5.

2. The Banach Algebra BV, (a, b)

Let BV|c, d], 0<c<d< o0, be the space of complex-valued functions 7 with
bounded variation [Var t]¢ over the (closed) interval [c, d], whereas B(a, b),
0<a<b=o0, denotes the space of complex-valued functions 7, defined and
bounded on the (open) interval (a, b), equipped with norm

(2.1) 1Tl gasy : =sup {Iz(t)|:a<t<b}.

Let N, P, Z, R, and C be the sets of natural, non-negative integral, integral, real,
and complex numbers respectively. ,

For jeP let BV, ,(a, b)= B(a, b) be the set of functions r which are j-times
differentiable on (a, bj with t2eBV (a, b): =n,_._,_, BV]c, d] such that the
improper (cf. [20, p. 15]) Riemann-Stieltjes integra :

b d
(22) [P1de9 (1) : = lim [#/]dD (1) < 0
a c*a+ ¢
d—b—

exists as a finite number (cf. (1.1)). In the following, je P and 0<a<b=<oo are
assumed to be fixed.

Lemma 2.1: For teBV;,,(a, b) the limits

(2.3) my(t; b): = lim t?7P (1), 0=<p<j

t=b—

exist, and teBV, . (a, b) for each 0=k<j, in fact

1 b lb ) ' Jj 1
(2.4) | ;-!j't“Idt""(t)léj—!ft’ldt“’(t)|+ = —‘Imp(‘c;b)l.

p=k+1 8"
Moreover, if b=oco, then
(2-5) m,(t;b)=0, 1=p<j. ' .
Proof: Let 0<a<r<s<b=<co. In view of (2.2) and |tV (s)—1(r)|
<[ 1deP ()| <r 7 (2 4/]d7 (t)|, the left-hand side tends to zero as r—b— so that
the limit '

(2-6) 3,(b) : = lim t9(¢)

t—=b—
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exists. This already handles the (trivial) case j=0. "
For the remaining j=1, consider first b<oco. Then (2.6) also shows ‘the
existence of my(t ; b)=b’6,(b), thus (2.3) for p=j. Moreover,

1 p bt | J-1 —_ s =1
2.7) (j-—l)!{tj |dzY )(z)l..(j_l)!;[zi |79 (¢)|dt

s fo Gl a2 fo- s !u’ldr‘f’(u)|+—|m,(r ),
G=nt, (=nt,

thus teBV,,,(a, b) and (24) for k=j—1.
If b= oo, then §;(c0)=0 for j=1 (cf. [17, p. 25]), and therefore instead of (2.7)

= ft-’ 1deY~ 1’(t)lsl ju’ldtu’(u)l

Furthermore, for any s>a, |s/t9(s)| <5’ [ |deP ()| |7 ¢/ |de (2)!.
In view of (2.2) one concludes m(z ; c0)=0, hence (2.5) for p=j as well as
1€BV,,,(a, o) and (24) for k=j—1.

Now one may proceed iteratively to complete the proof. ]

The linear space BV,,,(a, b) may be equipped with the norm

1% J o1
(2.8) Itllay,,, @n: =j—'jt‘|d1:‘f’(t)|+ z ;—;Im‘,(‘r ; bl

p=0

Then (2.4) implies BV, , (a,b)= BV, ,(a,b), 0=k=j, in the sense of continuous
embedding, in particular

(2'9) ”T”Bn l(n,»)é"‘fllnv,ﬂ(a.b)s 0<ks=j. v

Lemma 2.2: Let t€BV,,,(a,b), 0BV, ,(a,b) for some j, ke P. Then (cf.

(2.1.8)

1
(2- 10) ; [| ¢? z» (t) lpany =1l BV 4 (a.by O=p=j,

b

1
(2.11) —'—EIHH 1d[z? e @] ()| =2t sy, ., @i | I8y, , @by

Proof : One has for any a<t<d<b

d
t? | » (t)l éf uP |d‘t(‘” (“)l +dP |t(’) (d)I:
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and therefore by (2.2-4) for any a<t<b

1 1t 1 12, S
—-'t"lr“”(t)lépj’u”ldr"’(u)|+17|mp(t ; b)|§ﬁju‘|dtu’(u)|+ z —q_ﬂm"(t ; b)l,

! 4 ! L "l
thus (2.10). To show (12.11), let a<c<d<b and c=t,<t;<...<t,=d be a
partition of the interval [c, d]. Then

. 1
¢/ 7D (t) | Bea.5y Xl Z ¢t [Var 0'“‘)]::_,
ti=1

J+k ; t 1
ti—y[Var ¥ t”'“‘)]::_l éj_'
1 !

™M=

1
JUk!,
tl_([Var<Op!_
1

so that (2.11) follows by (2.10) since Riemann-Stieltjes sums approximate
corresponding integrals (cf. (2.2,8)). OJ
Lemma 2.3: For any subinterval (c,d)<(a, b) one has BV ;. (a,b)= BV, (c,d)

in the sense of continuous embedding, in fact

1 1 2
) 4P Ol T

(R4 ”BVj+ e =(+2) ”BV_,+ 1(@.by

||T"Bvl.+,(a.b,= liﬂl ”T||Bl’j+1(c.d)‘
c—a
d—b-

Proof : Obviously, BV;,,(a,b)=BV;.,(c,d). Moreover, in view of (2.10)
I :
—!mp(r )=l tllsy,, @or th— my(t ;d)=m,(t ; b)

which imply the-assertions. []
Lemma 2.4: Setting t,(t) : =(t/p) (Fejer-type) for t€BV;,,(a,b), p>0, one
has t,eBV;,  (ap,bp), in fact

(2.12) Iz, "m'j+ @by =17l BV, @by

Proof: In view of (2.2,3)

be W bo gt b
[ 01de2 (1= § (CY1d29 )= ful 15 (),
ap ap p p a

. t
m,(t, ;bp)= lim t*1P (t)= lim (=) t®()=m,(z;b). O
t—=bp— t—bp— p p
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Lemma 2.5: If t€BV;,,(0, o) is such that t9 is continuously differentiable,
then t, as defined in Lemma 2.4 is a continuous function of p >0 with respect to the
topology of BV;,,(0, o), i. e., for any p,>0

lim [[z,—7, llav,,, ©.m) =0
P=p,

Proof : In view of (2.12) it is sufficient to consider p,=1. Since tV*" is
continuous, one has

t.ilp—i—l U+ ”(t/p)—r(j+ ”(t)ldt

Ot 8§

]": o1d(x, — 1) (1) =

S —p I [ V(@) |dt+p i1 [ U D (t/p) — <Y D (t)ldt,
o o

which tends to zero as p—1 (dominated convergence) Moreover,
my(z, ;00)=my(t ;0) : =7(o0) so that the result follows in view of (2.5). O

The classes BV;,,(a,b) are intimately connected with the Riesz factors
(jeP,t>0) )

(1 —u/ty, O<u=st

(2-13) rj_,(u):={0, w1

Obviously, r;,eBV;,(0,0) for any t>0, in fact

(2.14) Iricllsy,, =1 t>0.

Let C&,[0,00) be the set of real-valued functions on [0, c0), arbitrarily often
differentiable with compact support. Obviously, Cg, [0, ©0)=BV;, (0, ) for any
jeP. Let 0,eCg [0, ), keP, be such that

(1—u), O0=u=1
oist, 0,m={0 Y

Then, setting for 0<u<

0, (u/b), O0<b< oo
0 i =
ks (1) {1(=0k(0))’ b= oo,

one has 0,,eBV;,,(0,00) for any j, ke P, 0<b< oo, in fact (cf. (2.8,12))

10,1l 0, o0), O<b<
(2.15) no,",,n,,ymw'w):{ kllav, (0, 0)

1(=my(0, ; )), b=co.
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Whereas Lemma 2.3 deals with restrictions to subintervals, the following result
provides suitable extensions to (0, c0).

Theorem 2.6: Let te BV, (a,b) for some je P, 0<a<b<oco. Then t may be
extended to (0, o) via

(_ 1 +1b i Jj (_ l)p
(2.16) A(u): =—-—'———jr]', (W)t deP(t)+ = ~—my(t ;)0,.5(u)
J a p=0 p:
such that AeBV;,,(0, o) with
(2.17) Il A "BV,+ 1(0,0) = CJ' I "B"J+ 1 (@.b)y

C;:=max{[0,lls,,  ©.c :0=p<ji=1.

Remark 2.7 : Concerning the Riemann-Stieltjes integral occurring in (2.16),
note that

b f5(t—uf d9 (1), 0<Zu=<a
(218)  [ri(u)dd@(t)={ [i(t—ufdP (), a<u<b
¢ 0, u=b

which in particular interprets the case j=0, where 1, () (for fixed u) and 7(t) may
have a common singularity (jump at t=u). Let us mention that this incidentally
coincides with the (standard extension of the) definition of a Riemann-Stieltjes
integral (%f(u)dg(u), appropriate for cases where f and g have a common
singularity of the first kind (cf. [1], pp. 192, 243 ; [6], p. 210, but see also Remark
3:2).

Proof : Obviously, 4 is well-defined, bounded, and j-times differentiable on
(0,00) with (0<k<j):

(2.19) zw(u)=(‘;$:jr;fz(u)zidr<n(z)+péo(_pf)p my(c 35O, (1),

(2:20) (i 0) =L f 0 00) /a0 1)

j (——1)”
+ I —my (v b)my (0, 5 0)s
p=0 p:

17 ) ; i 3 1? )
FIVE LW @I @1+ im0 ] w140 )
‘a = . 0

p=0

= 5 W|dA9 (u)| <

Since C;2[10cllpv,, , ©0.0)210x(0)|=1 (cf. (2.10)), one has by (2.8, 14, 15) that
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o
(221) I4lsv,,, ©.0= suP I75llpy,,, (o.m)j—!.‘-t”d’-'w(m

a<t<d

Jo1
+ sup [10,5llev,, 0.0 T —Imy(t;b)ISClitllay,, , ©.0)r
0spsi p=0 P’

Thus it remains to show that A and 7 coincide on a<u <b. Again this is obvious
for j=0 whereas for j=1 by partial integration (j-fold, cf. (2.18))

A(u) =(g:11})i! E(t— up~ldgi=-v (t)+:;=2:(_p—:),m,,(r ;b)0,.(u)

i —}dl’([)-}-mo(t ;b)=1(u). O

Note that formula (2.16) not only provides a suitable extension of a given
t€BV;,,(a,b) to some AeBV,, (0, 00), but may also be interpreted as a
representation of the elements in BV, (a,b) in terms of the basic Riesz factors.
Indeed, the classes BV,  are, roughly speaking, generated by the Riesz factors via
partial integration.

Let D,[0, ), je P, be the set of real-valued, continuous, strictly increasing

functions 7 on [0, o0) with

n(0)=0, lim n(z)= oo,

t— oo
which in case j= 1 are assumed to be (j+ 1)-times differentiable on ( o) such that

tPIn®* V()= Cn' (1) 0=p=), t>0,

lim ' (t)=0.

t—=0+

Let n ! denote the inverse of n and 7 . n the composition 7(n(t)) of t and n. With
the aid of the classes D [0, c0) one may formulate the following generalization of
Lemma 24.

Theorem 2.8: If te BV, (a,b), neD;[0, ), then toneBV;,(n~ "' (a), n~* (b))
with (for C; see (2.17))

(2:22) lton ||‘BVJ+1 (n~ Yayn~1 en=(j+ 2)Cj Cinllz ||19V,+l (a,b)>

1=Cj,:= sup lrjenllsv,,  ©0.0)<o0.

O<ct<c
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Proof : First of all, C;, exists as a finite number since r;,°neBV;, (0, ),
uniformly for ¢>0 (cf. [17], p. 28). Application of Theorem 2.6 to 6, ,€ BV, (0, o)
at point n(u) delivers for ue(0, )

Ous o) )=V o)) a0 )+

— 1)
j! ( ') m‘,(f),‘_b s w).

p:

II Mu..

Moreover, following the proof for the estimate (2.17) (see (2.19-21)) one again
obtains 6y ,°neBV;, (0, 00) with (cf. (2.15, 21))

| 0xpom ||BV,+ 10,0 =Cjy 110k ||1w,+ 1 0.0)=C;j, C;.

Using this, the preceding arguments as applied to te BV, (a,b) show that the
function

10 = f e @@+ 2 CW e 5)(0,00m) 0

p=0
coincides with ton on n~'(a)<u<n~'(b) and belongs to BV, (0,c0) with
4 ”BV,+1(0’ 00)§Cj Cinll T"m',+l (a,b)

In view of Lemma 2.3 this completes the proof. []

Corollary 2.9: Setting t,,(t) : =t(n(t)/p) (Hardy-type) for teBV;;(a,b),
r]eD [0, 0), p>0, one has t,,eBV;,(a,b,) with a, ~1 (ap), b, : =n""(bp)
and, ungformly for p>0,

) " tn.p ”BV,+1 (ap.bp) §(1+ Z)Cj Cj.n " T "BV‘H_ 1 (a,b)*
Proof : In view of (2.22)
| Tyl BV, (a,b,) = (f + 2) C;Ciul T(‘/P) ||av,+ , (ap.bp)

so that the result follows by Lemma 24. ]

Theorem 2.10: BV, , (a,b) is a commutative Banach algebra with unit under
the norm (cf. (2.8))

i+1)(j+6
(2.23) M]——) Izllsv,, , @b

and the natural pointwise algebra operations.
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Proof : Note that (2.23) defines a norm on BV (a,b). In view of Leibniz’s
rule one has for s, t€BV;,(a.b) that (cf. (2.9, 11))

_j'yld 0-.[ (J)(t)|< 2 —(l“‘k—),jl"|d(0'(k)‘fu k))(t)|

=2(j+Wlellsy,, @nltlsy,, @b»
thus oteBV;,(a.b). Moreover, in view of (2.10) for any a<t<b, 0=p=j
1
(p—K)!

=(p+1)llollsy,, @»ltlsy,, @b

P
lt”l(o‘r)(‘” ()= T —|tka™ (1)l [P~ % PR (¢)|
p! k=ok!

so that finally (cf. (2.3,8))

+1)(j+6
(2~24) ot ||BV,+l(a b)_(j—)"(']—) lo ||BV,+l(a.b) I T||BV,+1(a.b)-

Hence BV, , (a,b) is a commutative normed algebra under (2.23) with unit e(t)=
for te(a,b) satisfying llellsy,, w@n=1

To establish the completeness of the space, consider a Cauchy sequence {z,}
in BV, (a,b). Introducing the Banach space B;= BV,(a, b) of all functions o for
which (cf. (2.2))
1
!

b 1.
(2.25) lols,:==ft|do( )I+j—,||t’a(t)lls<a.m

1sﬁmtc,1tfollowsthat{1:,, }isa Cauchy sequence in B; since || 7, || 5; =2t llsv 4, @b
of (cf. (2.10)). Since B; is complete, there exists o€ B; such that

(2.26) lim |79 — 0l 5,=0.

n—* oo

Moreover, since {m,(z, ;b)} is a Cauchy sequence in C for each 0=p=j, there
exists u,eC such that

(2:27) lim m,(z, ;b)= s, OZpSJ.

In view of |to(t)—ul=|t[o(t)— m(t)]l+|t’1:f,”(t)—m,(t,, ;D) +1my(z, s b)—uyl,
one therefore has (cf. (2.3, 25—27))
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(2-28) lim /o (t)=p;.

t—>b—

Following once again the proof of Theorem 2.6 it results that the function 7,
well-defined via (cf. (2.16))

( j+1b

———j'r,,(u)t’do'(t)+ %‘ (

7(u) :

belongs to BV, (0,00)=BV;.,(a,b) (cf. Lemma 2.3) satisfying (cf. (2.21))

L

J 1
"T”BV,H(O o=C I |d0'(t)|+ z —,Iﬂp”
p=0 p:

h

as well as (cf. (2.18, 19, 28), with the obvious interpretation for b= c0)

s 1)’
p!

r‘j’(u)—( 1)1 jr ) (w)t! do(t) + é ( 1, 095 (1)

= —}da(t)+/tjb_j= —a(b—)+o(u)+u;b I =0(u)

for a<u<b and my(t;b)=p, for 0=p=j (cf. (218, 20)). Thus, in view of
(2.25—27), the sequence {t,} converges to t in the BV;,,(a,b)-topology. O]
' For the algebra BV, (a,b) we need the following result of Wiener — Levy-
type (cf. [11], p. 210) which considers compositions of the kind F ot instead of ton
of Theorem 2.8.

Theorem 2.11: Let F be holomorphic on some open G=C, and let K< G be
compact. If t€BV;,(a,b) is such that t((a,b))=K, then FoteBV;, (a,b), and
there exists some constant A>0, independent of <, a, b, such that

(2 29) ||F°T||BV,+,(a n=Alllzlsv @ b+ max |F(m)(f(b ))l][1+||‘t"av,+l(a -

O<mgj

Proof : In view of the hypotheses there exists a constant M = 1 such that for
all 0=m=j, z,,z,eK

(2.30) |F™ (z,)—F™(z,)| S M|z, —z,|.

To show (2.29) for j=0, let a<c<d<b and c=t,<t, < ... <t,=d be a partition
of the interval [c,d]. Then by (2.30) '

Z 1(Fe 90— (Fod (- I SM E T —cle- 1< MJlde(0)]
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so that FoteBV,(a,b) with
|Feot|sy (ab)__M“dT(t |+Imo(F°‘t b)ISM"T"Bv @pn+IF(T®-))l

establishing (2.29) for j=0. If j= 1, then again F™oteBV,(a,b) for each 0=Sm=j
(cf. (2.9, 30)) and

(2-31) I F(m)°t"Bl’l(a.b)éM”T“BVl(a,b)'*'lF(M)(T(b—))I-
Since Fort is j-times differentiable on (a,b), one has (cf. [9, p. 45])

p Fmgp m —k .
(For)P= % = )(—1)%“(1"' )?, 1=<p=ij,
o

m=0

m! -

thus, in particular, (F o t)?€BV,,(a,b). Consider for 0sk=m=j
18 .
J (A =j_' [t d[(F™ e ) (™ )P (o).

In view of (2.9) and Theorem 2.10 one has (F"™ - 7)*€ BV, (a, b), ™ *eBV;,,(a,b)
and, using (2:24, 31),

1™ o 1) oy @ S M Ty o+ F™ (b =) 1T b oo

(1+1N1+65mk 1

m—k
=™~ h"BVj+l(a n=l ||1-’||Bv,+l(a.b)-

Therefore by (2.9,11) for all 0sk=m<j
Lims2-3*M|< ”BV‘(a.b)+ |F™ (z(b—) iz ”’;Vl(a.b)-

,gi+1ﬂj+6)

m—k
2 | ol Ilzllav, @b

sA,llzllsv @n+ max |F™ (z(b— ))l][1+"t”BV_,+l(a k-
Ogmgj

Analogously, one has by (2.10) for each 0=p=j

1 _ -
! P |[(F™ o 1) (e )P ()| S | (F™ e 1) T "BVl(a.b) ™ =* lav,, @b
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A .
=5 Utlsy @n+ max [F™ (=) + by, @]
O<mg<j

from which the result follows. []

Corollary 2.12: For a parameter p varying over some set J, let 0<a,<b,=< o0
and rpeBVJ-H(ap,bp) be such that

(2.32) Cl L= Sup ” Tp ”Byj+ l(aﬂ' bﬂ) < o0,
pe J
(2:33) C, : =inf{|7,(t)] :a,<t<b, peJ}>0.

Then 1/t,eBV;, (a, b,) and

(2.34) sup || 1/7, llsv

peJ

f+1(ap‘ bp)< 0.

Proof : Consider F(z)=1/z, G=C\{0}, K={zeC :C,<|z|<C,} (note that
C,<C,). Then t,((a,b,))=K by (2.10, 32, 33) so that the result follows by an
immediate application of Theorem 2.11. [

For the Banach algebra BVJ-H(a,b) one may work out further details
(maximal ideal space, etc.), envisaged by abstract harmonic analysis. Here,
however, we confined ourselves to those facts, used in [13] and needed for the
following approach to a general multiplier theory.

3. Multipliers in Banach Spaces and Riesz Summability

For a measure space on Q let L*=L*(Q) be the Banach algebra of
complex-valued functions, essentially bounded on € with essential bound | - || .
Let X be a Banach space (with norm | - |y) and [X] be the space of bounded
linear operators of X into itself.

A subalgebra M =M (X, Q)< L * (Q) with unit e(x)=1 for all xeQ is called a
multiplier space for X if there exists an injective homomorphism T : M —[X ] such
that T(e)=1, the identity operator, and T is closed in the sense that for u,eM,
veL* and Se[X] the relations

(3.1) sup [, ll o <00, lim p,(x)=v(x) (a.e.),
ne N n— oo .
(3.2) lim | T(w,) /=S Ix=0, feX
imply

(3.3) veM with T(v)=S.
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Then M becomes a normed algebra under the norm

(34) leellae s =1 T() -
In this framework functions of BV, (a,b) give raise to multipliers on X if X
satlsﬁes the following Riesz summablhty condition : Let jeP and a function

¥ :Q—(0, ) be given. Then X is called R,-bounded if (cf. (2.13)) r;, e M such
that (t>0)

(3.5) sup |7 oY lly= :4;<oo,

t>0

(3.6) T(rj.o¥)f is (X-) continuous in t>0 for each feX

((3.6) should be added in [7; 14; 15], cf. [5] and Remark 3.2).

Theorem 3.1: Let X be R.-bounded and teBV;, (0, ). Then toyeM such
that

(37 Teew)f (“)'”;T('r WO (1) +1(0)fs fEX,

(3.8) lte¥llm=A4;lzlsv,, ©.«-
Proof : For each xeQ one has the representation (cf. (2.2, 16))

1+lao

(600~ T o) e ) 1)

= lim [(— )jH G 1nn(x)+1(00)]= : lim v, (x),

d
Gea(x) : =[(rjio¥)(x)t/dr?(t), O<c<d<co.
In view of (3.6) the vector-valued Riemann-Stieltjes integral
d
Seaf =] T(rj o) ft! dc? (t)

is well-defined for each fe X. Let a sequence {¢,,} of partitions c=t,,< ... <t,,=d
be given such that max,,<,(tx,—t-1.,) tends to zero. Then by the definition
of Sc,d

lim || T(u,)f—Scaf Ix=0, feX,

n—* oo
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(39) o (X) 2= Z (P @ W) (X) thn [79 (810) — 7 (ti- 1.0))

=
M=

Moreover, if j=1, u,(x) converges to o.4(x) for each xeQ satisfying
d : -
Il | o < J 7 1D ()1

Thus (3.3) delivers
(310) O’C‘deM Wlth T(O’c‘d)=sc‘d.

In case j=0 the integral g, ,(x) need not be the (pointwise) limit of y,(x) (note
that the sequence {t,,} of partitions is given in connection with the integral S, 4,
independent of x, cf. Remark 2.7). Therefore, to establish (3.10), one has to argue
separately. First consider the (right-hand continuous) Riesz factor (u,t>0)

1, u<t
ré(u): ={0 uzxt.

Since lim,.,,— ro(#)=rg,(u), one has by (3.1 —3,6) that
(3.11)  rguopeM with T(rg,oy)="T(ro.°¥)

Thus (3.5,6) are fulfilled for rg,°y, too.
" Let J<[c,d] be the set of (jump) discontinuities of teBV, (0, ) in [c,d].
Following [6, p. 224], consider the corresponding step-function

)= T [t(e+)—t())+ = [t()—7(t—)L
C%E‘j“ CT;%I‘

so that t,: =t—1g is continuous on [c,d]. Then (cf. (2.18) for j=0)

s =Cu )+l )3 =] (e ) (e 0,

G0 = = (o)) —x(O1+ (8o ¥) ) E) ~ el

Since 1, is continuous, the integral is again the limit of the Riemann-Stieltjes sums
(cf. (3.9))
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;"(X) - = Z (ro-'k..o l»b) (X) [Tc(tkn)—rc(tk- l.n)]
=1
so that similarly as above {,eM with (cf. (3.10))
d
TE)S=]T(ro.o¥)fdz(t)

Moreover, {, is an absolutely and uniformly convergent series so that (cf.
(3.1=3, 11))

T(C)f= Z T(ro.o¥)fle(t+)—1()]+ T T(rg.°¢)flz(t)—z(t—)),
v s
where the right-hand side exists since it is absolutely convergent in X and X is
complete. Therefore o.,e M with (cf. (3.6) and [6], p. 225)

d
T(oca)f={T(ro.o¥)fdz(t)
Summarizing, since v, satisfies (3.1) and for each feX (cf. (3.5))

§7: = T Tl )40 ) x(e0)s= () lim T,

o n— oo

ISF <Al elay,, (0. 00) I/ lx

the assertions (3.7, 8) now follow in view of (3.3). O

Remark 3.2: Note that in case j=0 the strong continuity condition (3.6)
ensures not only the existence of the integral T'({,)f but also rg,°yeM. But for
discrete biorthogonal systems (cf. Section 4.1) condition (3.6) fails. However, if one
requires (3.5) also for g, oy and substitutes (3.6) by the condition that T (ro,°¥) f
is of bounded variation (cf. [10, p. 63]), then assertion (3.8) is still preserved. On the
other hand, if S.,f is understood as a Bochner integral, it is even sufficient to
postulate that T (ro,°)f is merely (Lebesgue-) measurable (cf. [5; 19, p. 115]).
Here we preferred a Riemann approach to the integrals, allowing a pointwise
interpretation of the multipliers at each xeQ.

Replacing the (global) interval (0, o) by a (local) one (a, b), one finally arrives
at the following local version of Theorem 3.1 which was essentially used in [13].

Theorem 3.3: Let X be R),-bounded and t a complex-valued function, defined
on (0, ), such that t€eBV;,(a,b) for some 0<a<b<=<co. Then for each e M

satisfying
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(3.12) o(x)=0 for xeQ (a. e.) with Y(x)¢(a,b)
one has o(toy)eM, in fact (for A, C; see (2.17), (3.5))

(3.13) lo(o¥)in=A4;C;lloln I Tlay,, , @

Proof : In view of Theorem 2.6 the function T has an extension 4 in
BV,.,(0,0). Thus AoyeM by Theorem 3.1 such that (cf. (3.12))

o) (2 9) (x) =0 () (= ¥) () (@.c).
Thus o(t°y)eM. To establish (3.13) apply (2.17), (3.8) to derive

lo(op)imSlolylicylin=A;lalyliilsy,, ©00=4;Cillalyltlsy,, a0

4. Particular Multiplier Spaces

In this section concrete instances of multiplier spaces are studied to illustrate
the direct approach of Section 3. In particular, the abstract definition of
multipliers via spectral measures as developed in [5] is shown to be subsumed
under the present frame.

4.1. Biorthogonal Systems. Let X be a Banach space with dual space X *, and
let Q=K be an infinite countable index set. Consider a total biorthogonal system
i =X, {fihkexs X ¥, i. e, f2(f;) =8 (Kronecker symbol), and fi(f)=0 for all
keK implies f=0. In this situation the usual procedure is that a bounded sequence
p={p(k)}ig is called a multiplier if for each feX there exists f*€X such that
F2(*)=pu(k)fx(f) for all keK. But then T(u)f: =f*is a well-defined operator of
[X] such that T is an injective homomorphism of M into [X]. Moreover, T is
closed in the sense that (3.1,2) imply

Se(8f)=lim f3(T (1,)f) = lim pu, (k) S () =v(k)SE(f)-

n—*ao n— oo

Concerning the Riesz summability condition let us just mention the many results
known for, e. g, ¥(x)=|x| in connection with Fourier expansions into
(multivariate) trigonometric, Laguerre, Hermite, or Jacobi polynomials, respecti-
vely (cf. [17], p. 74 and the literature cited there).

4.2. Multipliers in Connection with Spectral Measures. Let Z be a o-field over
a set Q (e. g., Q= R", the Euclidean n-space, and £, the family of Borel sets). For a
Hilbert space H let E be a (countably additive, selfadjoint, bounded lineag
spectral measure on €, and let L *(Q, E) be the space of (E—) essentially bounde
functions u so that the integral

Ty(w) : =§)l‘(x) dE(x)
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is well-defined as an element in [H] (for basic properties and further details see [8],
p. 900). Then M =L *(Q, E) is a multiplier space for H (with || gl =1l 11l ) as well
as R} ‘bounded for any  and j since (3.1 —3) as well as (3.6) follow by dominated
convergence (cf. [8], p. 901).

In [5] this definition of multipliers was extended to Banach spaces X for
which H and X are continuously embedded in some linear Hausdorff space Y (this
hypothesis should be added in [5; 14; 15], see [13]; [19], p. 116) and for which
HNX is dense in H and X, i. e,

(4.1) HnX'""H=H, HnX'"°'x=X.
Then peL®(Q,E) is called a multiplier on X if for each feHnX

(4.2) Ty(WfeHnX, ITaflIx=ClSflx

In view of (4.1,2) the (X —1)_ closure Ty(u) of T,(u) belongs to [X ], defining an
injective homomorphism Ty such that (cf. (34{5)

liellae= Il Tx(e) I =sup{l Tu(W)flx : feHOX, [ fllx=1}.

To establish (332 let (3.1,2) be valid and feHnX. Then T (l”'g f converges to
Ty(v)fin H by & .1) and to’Sfin X by (3.2) so that§3.3) is fulfilled since H, X< Y
continuously. Of course, the Riesz summability condition for X is now nontrivial.
As an application (apart from Section 4.1), let us consider the (multivariate,
trigonometric) Fourier spectral measure over Q= R". To this end, let L?=LP(R")
denote the space of Lebesgue measurable functions f for which the norm

AN, : ={{(27‘t)"'/2 [ | f(u)|” du}'’?, 1<p<o

4.3
(4.3) ess sup, g |f(¥)l, p= 0,

respectively, is finite. Let & be the Fourier-Plancherel transform (cf. (4.4)) on the
Hilbert space H=L? and % ~! the inverse transform. For a Borel measurable set
B<R" let 2, be the multiplication projection : (25f)(x) : =f(x) for xeB and : =0
for x¢ B. Then E(B) : =% ' 2, is a spectral measure for H = L2 (cf. [8, p. 1989]).
Furthermore, for the spaces X =L?, 1 <p < oo, condition (4. 1) is satisfied, and (4.2)
coincides with the classical definition of Fourier multipliers (cf. Section 4.3).

Concerning a Riesz summability condition see (4.6).

) 4.3. Fourier Multipliers. The approach of Section 3 is flexible enough to
incorporate Fourier multipliers more directly. Indeed, let & denote the
Schwartzian space of infinitely differentiable functions, rapidly decreasing at
infinity, and

(4.4) F 1) 0 =2a) H* j'"f(u)e_"""du

R

be the Fourier transform of fe.% and % ~! be its inverse. In case 1 <p<oo an
element pueL*® (cf. (4.3)) is then called a multiplier on L” if for fe&

(4.5) F Y uF fNeL?, || F'wFEN,=CISf,
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Since & is dense in L?, 1<p< oo, the (L?—) closure T,(u)f of #~*(uZ f) is in
[L*] defining an injective homomorphism T, of M in [L?). Moreover, if (3.1,2) are
valid, then for (fixed) fe&

lim # ~Y(u, % f) (0)=F ' (vF f)(u)

n—* o

in view of # feL' and dominated convergence. On the other hand, (3.2) implies
for a subsequence {m}<N

lim & ~(u,, F f)(u)=(5f) (u) (a-e)

k=

so that #~'(v#f)=Sf on the dense set & establishing (3.3).

Analogously to (4.5) multipliers are defined for the space Co=C,(R") of
continuous functions on R" vanishing at infinity. But this approach fails for L*
since & is not dense. However, a multiplier 4 on C, can be identified by a
bounded Borel measure m via

u(x)=(2m)2 § &= dm(u),

Te, (1(0)=(2n)™2 § flo—u) dm(u).

In view of this representation, T, (1) can be extended to T, (u)€[L*] so that
M(L>,R") : =M(C,,R") is an appropriate choice of a multiplier space on L™ (see
also [12, p. 74]).

Concerning the Riesz summability condition, it is a classical result (cf. [16],
p. 114, see also [5]) that L? is Rﬂ,—bounded for

(4.6) y(x)=Ixl, j>(@m-1)1/p—1/2|

Other admissible choices of  can be obtained by using the fact that any surjective
affine transformation A from R" to R™ induces an isometry from M(L?, R™) to
M(L*,R") via p(Ax), xeR", ueM (L7, R™) (cf. [2] p. 15]). For example, take m=1,
0+#heR", and y(x)=|Ax|=|Z]- h;x;|. Then R,-boundedness follows by (4.6) (on

R!) for each j>O0.
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