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The notion of controllability index is extended to control constrained linear systems. An exact estimate
of the growth of the reachable set for small time intervals is proved. The robustness of the instant local
controllability is discussed.

1. Introduction
Consider a linear time-invariant control system
(1) x=Ax+u,

where xeR" is the state, ue U is the control parameter, U is a given subset of R".
Denote by R(x, T) the reachable set of (1) on [0, T, starting from the point x at
t=0, namely,

R(x ; T)={x(T); x(+) solves (1) for some u(+)eL,[0,T],
u(t)eU, and x(0)=x}.

Definition. System (1) is U-instantly locally controllable (ILC) iff Oeint
R(O ;T) for every T>O.

This crucial property of system (1) is very well studied. Together with the
classical result of Kalman concerning the case when U is a subspace, we shall
mention here the paper of R. Brammer [1], which is the first one studying the
controllability in the control constrained case, and the paper of R. Bianchini
[2]. The latter gives necessary and suffcient conditions for ILC for an arbitrary
constraining set U.

In the case when U is a subspace of R" a quantitative characterization of the
controllability of the system (1) is given by the so-called controllability index

o=min{k ;U+AU+ ... +A*"* U=R"}.

In this case it is proved by V. Korobov [3] that R(0 ; t) contains a ball centered
at the origin with a radius proportional to t° and, moreover, the exponent of this
estimate is exact. The estimations of the radius of the maximal ball contained in
R(0; t) as a function of t are closely related to the local Hélder property of
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Bellman’s function T(x)=inf{t ; xeR(0 ; t)} at t=0 (see the paper by N. Petrov
[4]) and, more generally, to the sensitivity of the time-optimal control problem.

Using polynomial approximations G. Stefani [5] proves an estimate of the
Hdélder exponent for a nonlinear system which is affine in the control. There the
constraining set U is not supposed to be a subspace. However, this important
result does not imply, at least directly, an estimate of the Hélder exponent in case
of a control constrained system, because of the assumption, that the
approximating system (which is constructed independently of U) is locally
controllable by means of controls with values in U.

In the present paper we extend the notion of controllability index to the
system (1) with the constraining set U which locally is a cone. Let p(t)=max {o ;
|x|<a implies xeR(0; t)}. In this case we obtain the exact estimate

mt° < p(t) = Mt°

of the radius of the maximal ball contained in the reachable set. Here m and M are
positive constants and o is the U-controllability index defined in Section 2. Thus
the number o is a quantitative characterization of the controllability property of
the system (1) by means of U. The definition of the U-controllability index is
based on a necessary and sufficient controllability condition in the form of the
Kalman rank condition, which is also presented in Section 2.

In Section 3 we discuss the robustness of the ILC property of the systems (1)
with constraints, i. e. the problem whether ICL will be preserved in case of
perturbations. It turns out that this property is in general not stable even with
respect to perturbations only in the matrix 4 (with a fixed set U). A sufficient
condition for robust controllability is presented.

2. Main result

In this section we shall prove an estimation of the growth of the reachable set
of (1) with the constraint ue U, which turns out to be exact and can be considered
as a quantitative measure of the controllability of the system (1) with control
constraints. First we shall introduce some notations.

_ Given a convex set V= R" we denote by F(V) the facial space of V at the
origin :

F(V)={veR"; 6veV for all sufficiently small |5|}.
We denote by con V the minimal closed convex cone with vertex at the origin,
generated by V. Define a sequence of spaces :
H,=F(conU), H,,,=F(H,+AH,+conU), k=1,...,n—1.

Theorem 1. System (1) with the constraint ueU is instantly locally controllable
if and only if H,=R".

Proof. The assertion of this theorem is another formulation of the results
given in theorems 2.1 and 3.1 in [2]. Let the system (1) be U-ILC, but dim H,<n.
Since H,=H,_, for some k implies H,,,=H,, the space H, is A-invariant and
F(H,+conU)=H,. In particular, if S is the orthogonal complement of H, and
P (conU) is the projection of con U over S, then F(P,conU)={0}. That
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contradicts Theorem 2.1 [2], which claims that F(P,conU)#{0} for every
A*-invariant subspace S(A* is the transposed matrix of A). On the other hand, if
there is an A*-invariant subspace S such that P (con U)={0},then S * contains
H,. Hence, using again Theorem 2.1 [2],we conclude that H,= R" implies U-ILC.
The proof is complete.

Since we are interested in the local behaviour of the function p(¢) defined in
Section 1, further we shall consider a compact set U, which guarantees that p(t) is
bounded when t€[0, 1]. Moreover, we shall suppose that U looks locally like a
cone :

Assumption A. U is compact and there exist a convex cone V and v>0
such that co UnB,=VnB,, where B,={xeR"; |x|=v}.
If system (1) is ILC, we can define the integer

o=min {k; H,=R"}.

We shall refer to ¢ as to U-controllability index of (1). Obviously in the
unconstrained case the above notion coincides with the well-known index of
controllability. The following result could be a motivation for our extension of
this notion. :

Theorem 2. Let system (1) be ILC and condition A be fulfilled. If o is the
U-controllability index of (1), then there exist constants m>0 and M such that

(2 _ mt° < p (1)< Mt° for every tel0, 1].

Proof. If Y(-):R">R" is an analytic function, then we shall denote by
exp(tY)x the solution of the equation x= Y(x}, x(0)=x, at t. For two analytic
vector fields Y and Z, the following Campbell-Baker-Hasdorff formula holds :

(3) exp(—t, Y)exp(t,Z) exp(t, Y)=exp(t, Z—t, t,[Y, Z]+ awaly

where [Y, Z]=(dZ/dx) Y —(dY/dx) Z is the Lie bracket of Y and Z, and the sum on
the right-hand side is convergent to an analytic vector field for all sufficiently
small t, and t,. Since we shall use further only affine vector fields, we can assume
that (3) holds for t,, t,€[0, 1].

We shall denote by o(s) any vector or scalar function with the property that
lo(s)|/s tends to zero together with s.

Now, we start with the proof. First we shall prove the left estimate in g)
Denote by G, the set of all vectors geH, for each of which there exist g,e A' H,,
i=1,...n—k, and positive numbers ¢ and d such that for every p=k and a€l0, 1]

n—p
exp(atPg+a T tP*1g,+0(t") exp(ctA) xeR (x,dt),
i=1

for every xeR" and te [0, 1]. Obviously ge G, implies age G, for a€[0, 1]. We shall
prove that h,geG, implies h+geG,, which yields that G, is a convex cone in R"
Let for p=k

n—p
K, (t)x=exp(utPh+a Z t?*'h;+o(")) exp(c, tA) xeR(x ; d, 1),

i=1
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and
n—p
exp(atPg+a T t?*g,+o(t") exp(c, tA) xR (x ; dyt),
i=1

xeR", te[0, 1]. From (3) it easily follows that
n—p .
K,(t)x=exp(c,tA) exp(atPg+a = tP* g, +o(t") xeR(x, d;t),
i=1

for some §,eA'H,. Hence K (t)x=K,(t) K, (t)xeR(x ;(d,+d;)t). On the other
hand,

K (t)=exp(c,tA) exp(az"(h+g)+a'_'z__:r t7* (hy+ §) +o(t") exp (c, tA)

=exp (at? (h+g)+ a"'gl:’ tPrifi+o0(t") exp((c, +¢2)tA)

for some f,e A'H,, which gives us g+ heG,.

Now, we shall prove by induction that G,=H, for k=1,...,n. Let k=1 and
uecon (co U). For some integer [ we have v=u/le VB, and hence aveU for every
«€[0, 1]. Then we can use the control function at?~'v, p=1 in (1) to obtain that

K (tf)x=exp(t(Ax+at” 'v))xeR(x ;t), xeR", tel0, 1].
On the other hand, we have
K (t)=exp(t (Ax +at?~ ' v)) exp(—tA) exp(tA4)
=exp(atPv+0.5t°* Av+ ...) exp(tA),
which yields veG, if ve H,. From the additive invariance of G, we obtain ueG, if

only ueH,.
Suppose that H,=G, and take an arbitrary g=Ahe AH,. From heG, we have

n—p .
K, (t)x=exp(xt’h+a = t?* h;+o(t") exp(c, tA) xeR(x ;d,t),
i=1
and since —heH,=G,,
n—p -
K,(t) x=exp(c,tA) exp(—at’h+a T ** h;+o0(t")) xeR(x,d,t)
i=1

for some h,h,eA' H,,c,,c,,d,,d,>0 and for every t,ae[0, 1], xeR". Then for
every >0
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(4) K () x=K,(t) exp(BtA) K, (1) xe R (x ;(d, +d; + B)1).
On the other hand, using (3) we obtain that

K(t) exp(—(c; +c,+ B)tA)=K,(t) exp(at? h+aft?*! Ah+atP*t hy

n—p—1

+a T Pt g 4 o(t") exp(—c,tA)=exp(c, tA) exp(at”* (BAh+hy +hy)

n=p=1 . -
+a T tPtitlfi4o(t") exp(—c,tA)=exp (P (BAh+hy +h,)

i=1

n—p—1
+a T TS o(),
i=1

where g, fi, fieA*H,= AH, , . This together with (4) implies that fAh+h, +h,
€ G, , for every f>0. Since G, . is a cone and h,, h,e AH,, we can conclude that
g=Ahecl(G,.,nAH,). Thus AH,ccl(G,, ,NnAH,) and from the convexity of
G, ., it follows that AH, <G, .

Since obviously H, = G, <= G, , , and as above VnH, , ; = Gy, ,, we obtain that
H,‘,r =G, . Thus we proved by induction that G,=H,=R"

Let h,,..., h,, be a nonnegative generating set of R". Then there exist posmve
numbers c; dnd d,, i=1,...,2n, such that

exp{t® h;+o(t")) exp(c;tA)xeR(x ;d;t), xeR",te[0, 1].
Apblied to x=0 this gives us
t”h;+o(t°)eR(0 ;d;t), i=1,...,2n,

which by a standard argument implies the desired left estimate in (2) for some
positive constant m.

Now, we shal} prove the existence of the constant M in (2) Since U is
compact, the case o=1 is trivial. Therefore,we suppose that ¢>1. Denote
S,=H>,, k=2,...0 and let P, be the projection operator over S,. From the
definition of H, it follows that F (P, V)={0} for k=1,..., 0. Moreover, if P, is the
projection operator over S,nH,, then F(P,V)={0} for k <o. Hence there exists a
vector [, €S, and vectors T,(eS,‘hH,‘=S,‘r\S,‘*+l (k<o) such that

(5) (,,v)>0 for every veP,V,v#0,

(6) (I, v>>0 for every veP, V, v#0.
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Define successively l, =(l;+, + T,‘)/I Ls1+1L), k=0—1,...,2. We shall prove that the
following properties hold true :
(i) IkeSy |lI=1 and there exists ¢,>0 such that <l,,v> Zc,|P,v| for every
veV, k=2,...,0;

(1) (le+1)°NSk+1<=() for k=2,...,0—1.

Since I, €S+, =S, and [,eS, we have I,€S,. Taking an arbitrary veV,we
have (I, v) = {l;, Py v). From (5) and from the closedness of P, V we conclude that
there exists ¢, >0 such that (1) is fulfilled for k=o.

Now, suppose that (i) is fulfilled for k+ 1. Then setting n=1/|l;,,+ LI>0
we obtain that

iy v =l Py 0> =<l y + 1o Py v+ Pvd
=n0<le+ 15 Prs 1 0D + 1l Pvd 2n¢4 s 1 | Pisy 0] +ndy | Pool
‘2’1 min {¢; 4 1, di} | Py vl =c, | Py vl,

where d, >0 exist according to (6), thanks to the closedness of P, V. Thus (i) is

proved. .
If le(le+1)°NSksy» thendl, > <0. We have

Ly =LL by + 1>/ e+ 1 + =< bes 1 DN w1 +LIZ0,

which gives us le(l,)°.

Further we denote by c,, c,,... appropriate positive constants. We shall
prove the following assertion :

A,. There is a constant M, such that if x(+) is a trajectory of (1) on [0, ¢] and
x(t)e(l)°NS,, then

| P, x(s)| <M, t* for every s€[0, t].

In particular, for k=0 and I= —I, we obtain that if —y()l,€R(0, t) with ¥ (t)>0,
then Y (t)<M,t°, which implies the upper estimate in (2).

Let us prove the assertion A4, by induction. From the compactness of U we
have | x(s)| < M t, s€[0, t], for some constant M, and an arbitrary trajectory x(+) of
(1). We shall refer to this fact as to the assertion A4,.

Let A, hold for some k=1 and let x(<) be a trajectory of (1) on [0, ¢]
corresponding to an admissible control u(+), such that x(t)€(ly+,)°NSy 4. fk>1,
we may represent x(s)=y(s)+z(s), where y(s)e H,_, and z(s)€S,. According to (ii)
we have x(t)e(l,)°nS;, and by the inductive supposition

(7) [z(s)|=|P,x(s)| S M, t*, s€e[0, 1]
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ill_I}I) case k=1 we denote z(s)=x(s), y(s)=0 and (7) holds by A4,).
us

s 1o x(2)) = § (v 15 AX(5)) + i+ 1, u(s)D)ds
0

2 (g1, A(y(s)+2(s))ds +dy+ 1 | Prsy “(‘)"Ll-
0

From Ay(s)e AH, -, < H, we get {l;+, Ay(s)>=0. Then using (7) and the relation
x(t)e(lx+1)° we obtain that

02 <ls 1, x(t)>= —c, b dy g | Pty “(')”Ll‘
Hence

(8) | | Pecyu(e)ll, Septt* .

Now, consider
Pk+1x ) ij+1Ax +P,‘+1u(9))d9.
o

Since P, Ax(0)= P, Az(0), using (7) and (8) we obtain
[Py 1 x(s)|=(c3+c) M 5™,

which completes the proof of the theorem.
The assumption that the set U is locally a cone is essential for the lower
estimation in (2). This can be seen from the next example.

2
Example. Let U={(u,v)eR?; u = v} and consider the system

x=y+u
o) el
In this case V=con(co U)={(u,v)eR?; u=0}, H, ={(0,v) ; veR}, H,=R?, thus
the system is controllable. The V-controllability index of (9) is equal to 2, but it is
easy to calculate that p(t)<ct>. The reason is that (in the notations of the proof of
Theorem 2) the vector (0, 1) does not belong to G, but +(0,1)eG,. We may see
this by using the control (u(s), v(s)) =0.5(t>, +1) for s€[0, ¢]. Then G;=R? and we
obtain mt> < p(t).

The above example also shows how one can use the proof of Theorem 2 to

obtain estimations of the reachable set in case of sets U being more complicated
than cones.
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3. Robust controllability

It is well known that the set of ILC systems with a fixed dimension is open
(and dense) in the natural topology in the set of all systems with the same
dimension. Unfortunately, this important property does not hold in case of
constrained control. It is obvious, that arbitrarily small perturbations in the set U
may destroy the facial space F(U) and thus the ILC property. The following
example shows that an ILC system may lose this property as a result of arbitrarily
small perturbations in the matrix 4 (even when the set U is fixed).

Example. Consider the system

Xx=Ax+b u, +b,u, +byu;, xeR*,

where
0 0 0 0 0 1 —1
1 1 1 1 0 1
A= ’ b1= s b2_ ’ b3= ’
0 p 0 P 0 0 1
0 0 0 0 1 0 1

with the constraints u,=0 and u;=0. Here p is a parameter. Checking the
necessary and sufficient condition given by Theorem 1, it is easy to verify that the
above system is ILC just when p=1. The reason for this effect is, that for p=1 the
projection of con U over the orthogonal complement of the space H,+ AH,
contains a line, and dim H,>dim H,, while for p#1 this is not true. The above
discontinuity of the facial space of the projection of a convex cone over a subspace
is possible only when the dimension of the subspace in question is greater than 1
(equal to two in our example). This observation leads to the sufficient condition
for robust controllability given in Theorem 4. But first we shall reformulate
Theorem 1 in a more convenient way, using the following notations :

V=cl con(co U) (assumption A4 is not required below) ;
K(L)=L+ AL+ ...+ A" 'L for L-subspace of R";
Do={0}, Dh=K(F(Dk+1+V)), k=1, 2,...

By a standard linear algebra argument one can obtain from Theorem 1 the
following result.

Theorem 3. System (1) is U-ILC if and only if

D[u+l =R"

et i
2
(here [k] means the largest integer not greater than k).
Now, we can formulate a theorem for robust controllability. Together with
system (1) we shall consider the perturbed system 4
(10) x=Ax+u

with the same constraining set U.
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Theorem 4. Let system (1) be U-ILC and let dim D, 2n— 1. Then there exists
£>0 such that for every n#*n-matrix A for which |A— A4 |<e, system (10) is also
U-ILC.

Proof. Since (1) is U—ILC and dimD,>n—1, then D,=R" and
dim F(P,V)=1, where P, is the projecting operator over Dj. The set D,
corresponding to A has its orthogonal subspace D7 arbitrarily closed to D,, if
only ¢ is sufficiently small. Thanks to the fact that F(P, V) is one-dimensional we
may conclude that F(P, V) is also one-dimensional (P, is the projecting operator
over D7) and hence D,=R" i.e. (10) is U-ILC.

The sufficient condition given in Theorem 4 is essential, as it can be seen from
the example given at the beginning of this section. If p=1, then D,=R*, but
dim D, =2<n—1 and therefore arbitrarily small changes of p may destroy the
ILC property. '
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