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On Computationally Implementable Variants
of the Method of Centers of Gravity

T. 1. Encheva, A. Iu. Ievin, D. L. Vandev

Presented by P. Kenderov

A class of convex programming algorithms, which are closely related to the method of centers of
gravity, is discussed. Particular attention is paid to practically realizable methods, which do not
enclose domains, where the extremal point is localized into simply structured domains. The considered
versions are of importance when computation of the function and its gradient values is very laborious.
The problem of minimizing a quasi-convex function is separately considered. A data structure for an
effective maintenance of a polytope in the computer memory is proposed.

1. Introduction

Apart from the well-known gradient methods for convex programming,
optimization methods connected with the so-called central sections have been
recently widely spread. In this paper we discuss the main versions proposed up to
now and give some new approaches. We shall consider not only the theoretical
aspects, but the practical effeciency of the algorithms as well, and even more
attention will be paid to the latter.

2. The method of Centres of Gravity (MCG)

We consider the problem of minimizing a convex function f(x ((2 over a convex
compact My<=R", [My|>0 (|- | denotes the volume). The MCG [1, 2] actually

consists of the following four components.

I) Let x,€int M,. By computing the value grad f(x,) we can cut off a portion
of M, which does not contain the searched minimum point x.;, Namely,
X.in€M,, where M, is the intersection of M, and the half-space

(1) {grad f(x,), x—x,>=0.

(Naturally, if grad f(x,)=0, then xq=X;,)-

In the case of non-differentiability of f at the point x, one could use its
subgradient. But in practice this is a rare situation in view of the algorithm’s
nature and the well-known fact that a convex function is differentiable almost
everywhere.
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_ If we can also calculate the value of f at a given point, then by virtue of f
being convex, we can change the inequality (1) by the stronger inequality

(2 {grad f(x,), x—xq) Sc—f(Xo),

where ¢ is the minimal known value of f at the points of M, (if f(x,) is such a
minimal value itself (1) and (2) coincide). We denote this stronger variant of I by I.

~II) Let x, be the center of gravity of M,. Any hyperplane passing through x,
divides M, into two parts such that the volume of each part does not exceed [3] :

(1—(

n
n+1

))IMol<(1—e” ") Mol

By combining I and II it is possible to localize the point x.;, in the sets
Mo>M,>5M,> ... whose volumes are exponentially decreasing :

(3) M IS(1—e I M|, k=1, 2,...

It is clear, that this estimate holds in the case one uses I, as well.

I1I) Though decrease in volume does not imply a decrease in diameter, using
arguments relevant to convexity, one obtains a solution of the problem of
e-minimization of f, i.e. one can find a point x,e M, such that

f(xc) é f(xmin) +é,

where ¢>0 is arbitrarily small. Namely, suppose that m steps of the algorithm
have been performed. Let x, be the center of gravity of M, k=0, 1,...,m and x}, is
that point of the sequence x,, X,,...,X,, at which f has the smallest value. The
following holds true [4] :

(4) S(xm) = (Xpmin) < (max f—min f) (1 —e™ )"

M M

(4] o

Hence, the smallness in volume of M, implies the proximity of j(x) to the
minimum of f on M.

IV) When k is growing, the structure of the set M, may assume a complicated
form, which causes some difficulties. To avoid this, one can enclose M, from time
to time into a “simple structured” set M, which has a volume as small as possible.
There are many ways to obtain such an inclusion ; the important fact is that every
variant keeps the exponential decrease in volume.

The MCG differs considerably from the gradient methods. In contrast to
them, MCG actually needs no additional assumptions for f exept convexity. With
gradient methods attention is concentrated upon a monotonic decrease of the
function fand the question of localizing the point x,;, is not considered at all. For
MCG, on the contrary, the basic problem is to contract the domain of
localization.

The main advantage of the method is the possibility to a priori determine the
number of needed operations ; the main difficulty is the necessity to deal with
domains of localization (maintenance of M, in the computer memory,
determination of centers of gravity, cut-operations, procedures of inclusion
according to 1V). The specific weigth of the arising difficulties is defined by several
factors — the dimension of the space, the chosen version of the method and, what
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is to be specially underlined — the cost of computing the values of fand grad f at a
given point. Approximately speaking, the more expensive are the latter
computations the more justified is the work with domains of localization. The
smallness of n does not always imply a little cost of these computations. One such
example is given in [1] (the problem of block convex programming with an
arbitrary number of variables and not great number n of composition constraints).
The other example is the linear time-optimal control problem, where n is usually
not great, but the cost of computing f(x) and grad f(x) is significant (especially
when high precision is required).

Concerning IV, we would like to note, that the original idea got an
interesting  extension. Independently and almost simultaneously A. S.
Nemirovskii and D. B. Tudin [5] and N. Z. Shor [6] proposed to use
ellipsoids as localization domains M; and to enclose on every step the newly
obtained domain (half-ellipsoid) into an ellipsoid of minimal volume. Since the
inclusion operation is not connected with special difficulties, this version of MCG
is practically realizable for great.n, too. On the other hand, the speed of volume
decrease noticeably slows down and the number of operations for computing
values of f'and grad f grows approximately n times. Thus, practical efficiency could
be expected in problems for which these computations are not very expensive. The
problem of linear programming serves as such an example. By the way, the
ellipsoid method gained fame after L. G. Khachiyan [7] had used it to prove
the polynomial complexity of the linear programming problem. Althogh this
result undoubtedly has theoretical significance, from practical point of view
non-linear programming remains to be the natural scope of implementation for
any variant of MCG, since for linear programming there exists a variety of
effective algorithms.

Being one of the variants of MCG (in the broad sense of the word), the
ellipsoid method has nowadays a variety of modifications [see 8, 9]. One more
version of MCG was proposed independently in [10] and [11]. Here simplexes
were taken as localisation domains. The reduction in volume of localization
domains is less regular than at the ellipsoid method. With the ellipsoid method the
volumes decrease geometrically with the ratio

n vimq_ L.
(! (n+ 1)) ! ne

For the volumes of simplexes such a general formula does not exist (one can give
only an upper bound). The experimental data (for n < 10) available to us show that
the volumes of simplexes decrease appreciably faster than the volumes of
ellipsoids.

3. Implementable versions of MCG without using inclusion

In case the computation of f(x) and grad f(x) is highly expensive, the above
said implies that it is very desirable to manage without IV, avoiding in this way
the increase of volumes. We consider now the possibilities, which arise here.

Let our algorithm consist of components I-III only. Suppose that the initial
localization domain M, is a convex polytope in R"”; hence, the subsequent
localization domains M, are also convex polytopes.

The labouriousness of the operation for determining the centers of gravity of
M, grows rapidly with the growth of n: for n=2 it is not great, for n=3 1t is
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essentially greater, with further growth of the dimension the size of the required
work quickly leaves the real limits.

The basic way to lower the labouriousness of the method is to change the
centers of gravity x, by some kind of points x;, which are “central” enough and
c}(!)ynparatively easy to be obtained. We shall consider three approaches of
this sort.

3.1. Convex combination of vertices. One of the natural pretenders for a
“central” point of the polytope M is the center of gravity of its vertices v,

Uy s U 2

z(M)= v;

i
1

M3

1
m;
or its stochastic image

z(M, &)= Z a;v,

i=1

where a=(a,, ,,...,0,) is random sampled point uniformly distributed in the
simplex XL, o, =1, o;20, i=1,2,...,m.

If we know the vertices of M, we can easily obtain z (M), respectively z(M, ).
Thus, the computational work is reduced to passing from the vertices of M, to the
vertices of M, ,, in an effective way. It is of great importance to rationally
organize the corresponding data base. As far as this problem is of independent
interest, we consider it in detail in section 5. We mention now only the fact that we
have to preserve all the m, vertices of the polytope M,. Therefore, it is important
how m, varies. One might expect that along with k, m, will also increase. But, as
the experiments show, this does not happen and the maximal value of m,, as a
rule, allows MCG to be successfully used for n<10. Another strongpoint of the
considered version is the quick decrease in volume. Unfortunately, both these
advantages are verified only empirically. It is impossible to give a guaranteed
estimate for volume contraction (for n>2) as it is shown by the example of
pyramid with great number of vertices in the base and section parallel to the base.
Such situations are very rare in practice. One of the aims of the randomized
version connected with z(M, ) is, roughly speaking, to lower the probability for
appearance of such situations. Another aim is to dispose with a flexible scheme,
which could be stochastically varied (at the expense of randomness of a). An
indirect justification for different stochastic versions of the method is the
result [12].

3.2. Uniformly distributed representatives. Suppose that we have an easy way
to generate random uniformly distributed points in the polytope M,. One of the
methods we can apply is the method of “random walking on chords” [13]. It is
clear, that if we have [> 1 independent uniformly distributed in the volume of M,
points, then their mean value is close to the center of gravity of M, in probability
sense (with the growth of I the étandard error is of order /~'/?). Hence, the
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question is to obtain such points effectively enough. Let us call them
representatives of M,.

Let I be some fixed number of representatives. Now M, will be characterized
by two “constituents” : system of linear inequalities and system of representatives.
We consider the transition from M, to M,.,.

Let z, be the arithmetic mean of the representatives of M, and f(z;) be the
smallest value (“the record”) of f among the values f(z,), f(z,),...,f(z,). According
to I the system of linear inequalities for M, contains (apart from the initial group
of inequalities defining M) inequalities of the kind :

(5) grad f(z)), x —z;) = f(zk-1)—f(z), i=0, 1,...,k—1.

The transition to the system of linear inequalities defining M, , , is carried out in
the following way. If f(zi)<f(zi- 1), the righthand side of the inequalities (5) is to
be reduced, i.e. f(zi- 1) is to be changed by f(zi) (=/(z,)).- No matter whether we
had to recalculate the right-hand sides of system (5) or not, we add one new
inequality :

{grad f(z,), x—z,> = f(zk)—f(z,)-

It is by far not so simple to solve the question of representatives of M, ,,. Itis
easy to check which of the representatives of M, remain in M, ,, ; let us denote
them by I'(<I). We are to complement the number of representatives of M,
with respect to [ It is easy to show, that in the case of “random walking on
chords” the number of operations needed in order to come over from M, to M, ,,
is proportional to nkml. As far as n, m and [ are fixed, the labouriousness of a
transition from step to step grows linearly with respect to k, while the volumes of
M, decrease exponentially. Thus, the increase of labouriousness of a step is not so
important.

3.3. Combination of MCG and gradient methods. As it has been mentioned
earlier the MCG essentially differs from gradient methods. This does not mean,
however, that these two approaches are mutually exclusive and, what is more,
their combination can be very expedient in practice. We shall consider two
examples of such combinations.

In the first place, the scheme of the algorithm can be the following. At the
beginning one can use the MCG (in some of the versions presented above) until,
for instance, the maintenance of the information about the subsequent polytope
M, becomes too hard. Usually in this moment the volume of M, turns out to be
small enough and hence the record value f(x;) is close enough to the minimum.
Therefore, it is natural to choose x; as an initial point for some kind of gradient
methods. Thus, here the MCG is used in order to obtain a qualitative initial
approximation, which as it is well-known, is of great importance for the majority
of gradient methods.

Secondly, one can proceed as follows. Suppose k steps have been carried out
using MCG with the component . Let x; and xj be the intersection points of
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M, with the ray starting from the point x, and going into d_irection' of
—grad f(x,) (we do not consider here the possibility of the ray not intersecting
M, ;). Tt is clear, that if x, is a record point (i.e. x; =x,), then either x, =X} or
X, =Xx;. As a “central” point x, ;,; we chose some point in the interval (x;, xi) (for
instance, (x} + x;)/2). The sense of this recommendation is obvious enough. Sugh a
procedure could be considered as a descent in the direction of the antigradient
with the length of the step defined by the information about the localization
domain. On the other hand, going into the anti-gradient direction we enlarge the
chance to obtain a next record value, which, in connection with [, can imply a
sharp reduction in the volume of M, ,. It is clear, that the case when the point x,
is a record itself, is especially favourable. Therefore, it is proper to include the
proposed approach into every version of MCG (which does not use 1V) and apply
it on the steps, where x, turns out to be a record point.

4. MCG for quasi-convex functions

Until now we assumed that the function to be minimized is convex. However,
the basic idea of the algorithm is applicable for quasi-convex functions, too. Recall
that f is called quasi-convex over a convex set M,cR" if

S(Ax +(1—2)x,) <max {f(x1), f(x2)}

for all A€[0, 1] and all x,, x,eM,,.

For the sake of presentational simplicity we confine ourselves to a
continuous differentiable function f (although, the differentiability, as in the
convex case, in fact, is unessential). We suppose as well, that grad f vanishes only
at the minimum points of f.

By using the already employed enumeration of the components of the
method, we can briefly circumscribe the case in a following way. The components
I-IV remain valid, although the justification of III needs modification ; 7 does not
hold. Indeed, (1) easily follows from the quasi-convexity of f. The components II
and IV have pure geometrical character and are not in connection with the form
of the function. Let us consider in detail the component III.

The inequalities (4) for a quasi-convex function, generally speaking, are not
true. In order to realize the transition from smallness in volume to a smallness in
error with respect to the functional, we will use some additional information — the
Lipschitz constant L and the diameter d of M. We will show that, instead of (4),
the following inequalities hold :

©) S068) (ki) S L(1 —e™ 1y,

In fact, let x,;, be any minimum point of f over M, (obviously, x,,;,€M,,), X’ be the
nearest to x,,;, point of the closure of M\M,,, p= | x,;,—x’|l. The value of fat a
record point x,, is not greater than the value at any point from the closure of
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M,\M,, (for the quasi-convex case it can be proved in the same way as for the
convex one). Therefore

(7) f(x:l) _f(xmin) é f(x') —f(xmin) é Lp

Furthermore, every interval (x,,;.. ¥), YEM\M,, is not greater in length than d
and contains an interval (x., )’) with length not less than p. Hence

(8) m—:':;(p/d)"-

By comparing (7) and (8), we obtain

. | M, |\1/n
S ) = (Xpmin) = Ld(m) >

which in view of (3) gives the inequality (6).
It can occur that the Lipschitz constant of fis unknown or does not exist, but
the estimate for the continuity module of f

If(x+y)—f)N=g(lyl), (9()=0 for t—0),

is available. The same arguments show that then
f(x,',,) _f(xmin) é g(l —e” 1)’"/” d)'

Thus, if g(t)<ct® for some £>0, the exponential convergence with respect to the
functional is preserved.

We note, that the estimate (6) can be obtained with the help of
D. B. Tudin’s result [14], which is formulated in other terms.

We dealt with the case of quasi-convex functions in view of the fact that they
are very important in the applications. As an example we cite the already
mentioned linear time-optimal control problem. This problem can be reduced to
the problem of minimizing some quasi-convex function f. The function f is
implicitly described, but it is possible to calculate the values of f and grad f at a
given point. The calculations are very expensive even for not large problems.
Apparently, the MCG is the most effective way to solve this problem. We are not
going to deal in detail with this problem in the present paper.

5. Maintenance of a polytope in the computer memory

As it was mentioned above, the rational organization of a data base when
dealing with polytopes is of great importance. We propose now an effective way to
maintain and update a polytope.

Any polytope can be represented as a set of linear inequalities or, what is the
same, as a convex hull of its vertices. The main operations, we want to perform
effectively, are the following : i
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1. Check if a point lies in the polytope.
2. Check if a new inequality intersects the polytope, is “superflous” or
“anti-coincident”.
3. Add a new inequality, i.e. form a new (smaller) polytope.
4. Create a (random) point in the polytope using its vertices.
In order to perform operations 1. and 4., we need a set of inequalities defining
the polytope and a set of polytope’s vertices. Moreover, having in mind
operations 2. and 3., these two sets should be properly connected.
The base of the structure we suggest consists of the so-called lists. Every list
represent an inequality or a vertex and consists of the triple :
— real vector of fixed size n+1 ;
— non-negative integer — the length of the list ;
— a set of different integers sorted in an ascending order.
The first part of the list contains the corresponding coordinates (of a vertex
or of a normal vector and the right-hand side defining the inequality). The
integers in the last part of the list are pointers to some other lists. A list is called
“short” when its third part is missing and “full” otherwise. Actually, each vertex of
the polytope is itself a full list consisting of faces incident with this vertex and each
face of the polytope is a list of vertices incident with this face (generally a
short one).
At the very beginning we create a common pool of empty lists in the
computer memory. Every list is defined by its starting address. The main
operations over the lists are the following :
A. Get a list from the pool.
B. Return a list to the pool.
C. Insert an integer into a list.
D. Delete an integer from a list.
E. Compare two full lists and in case the number of common elements is not
less than a given m, create a list containing the common elements.
The data structure we propose is built according to the concept of lists
described above. The key procedure in the structure is the operation 3. It can be
carried out in the following steps :
1°. Separate the list of all vertices into a set of “old” vertices (i.e. satisfying the
new inequality) and “marked” vertices (i. e. not satisfying the new inequality).
2°. Delete the marked vertices from all lists.
3°. Delete faces with empty lists of vertices.
4°. Create an empty list of “new” vertices for the face “defined” by the new
inequality.

5°. Choose convenient pairs of old and marked vertices and create a new vertex
together with its list) between them.

6°. Clear marked vertices from the computer memory.

7°. Add the new vertices to corresponding lists.

8°. Create the set of all vertices as an union of the sets of old and new vertices.

Let us note that it is possible to use the dual representation of the polytope
exchanging the vertices and the faces in the structure considered above. Then
operation 3. is an adding of a new vertex to the description of the polytope.

FORTRAN programs were written by the authors for the presented structure
and are available to users. The programs have been tested with ES-1040 and
IBM-PC computers. The efficiency of the data structure depends heavily on the
number of polytope vertices and faces. For random n-polytopes (n<10) it turns
out that the amount of memory needed is not very large.

An additional advantage of the structure is that it allows implementing the
original MCG (when full lists are applied) by splitting the polytope into simplexes.
This problem will not be considered in detail here.
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6. Conclusion

From all stated above it follows that the MCG represents a whole family of
algorithms joined by some common ideas. We outlined a part of the
existing versions only. The choice of a concrete variant depends on many
considerations — the dimension of the problem, the information available for the
function f, the cost of computing the values of f and grad f at a given point, etc.

We did not aim to give a survey on all the newest results concerning MCG.
Our aim was, mainly, to draw attention to the practical applicability and
efficiency of some versions of the method, which apply neither inclusion of the
localization domains into “simple” domains (which is volume-increasing) nor
exact computing of centers of gravity. It seems to us that this implementability
and efficiency have not been entirely realized by operations researchers up to now.

Many questions arise in connection with the problems considered. The most
interesting of them are, in our opinion, in the intersection of probability theory
and geometry of convex polytopes. The answers to these questions can be
obtained both in the way of theoretical investigations and with the help of
large-scaled computer experiments.

References

—

wm A WN
o » wo »

Iu. Levin. On an Algorithm for the Minimization of Convex Functions. Doklady Akademii

Nauk SSSR, 160, 1965, 1244-1247. (Russian).

. J. Newman. Location of the Maximum on Unimodal Surfaces. J. ACM, 12, 1965, 395-398.

. Grunbaum. Partitions of Mass-destributions and of Convex Bodies by Hyperplanes. Pacific.

J. Math., 10, 1960, 1257-1261.

.S.Nemirovskii and D. B. Iudin. Complexity of Problems and Efficiency of Optimization

Methods. Nauka, Moscow, 1979. (Russian).

B. ludin and A. S. Nemirovskii. Informational Complexity and Effective Methods of

(Solution) for Convex Extremal Problems. Ekonomika i Math. Metody, 12, 1976, 357-369.

Russian). N

Z. Shor. Cut-off Method with Space Extension in Convex Programming Problems.

Kibernetika, 1, 1977, 94-95. (Russian).

G. Khachiyan. A Polynomial Algorithm in Linear Programming. Doklady Akademii Nauk

SSSR, 244, 1979, 1093-1096. (Russian).

. G. Bland, D. Goldfarb and M. J. Todd. The Ellipsoid Method : A Survey. Operations

Research, 29(6), 1981, 1039-1092.
L. Goffin. Variable Metric Relaxation Methods, Part II, The Ellipsoid Method. Math.
Programm., 30(2), 1984, 147-162.

10. B.Yamnitsky and L. A. Lévin. An Old Linear Programming Algorithm Runs in Polynomial
Time. — In: 23rd Annu. Symp. Found. Comput. Sci., Chicago, III, 3-5 Nov., 1982, Silver spring,
Md, 1982, 327-328.

11. L. T. Ashchepkov, B. I. Belov, V. P. Bulatov _and others. Methods for Solving
(Mathem;atical Programming and Optimal Control Problems. Nauka, Novosibirsk, 1984.
Russian).

12. A.Iu. Levin and A.S. Shvarc. On a Scheme of a Random Search. Proceedings of Seminar on
Functional Analysis. 7, Voronezh, 1963, 67-69. (Russian).

13. Iu. V. Rusin. On a Markov Generation of Uniform Distribution in a Multidimensional
Domain. — In : Heuristic Algorithms in Optimization. Yaroslavl, 1981, 79-82. (Russian).

14. D. B. ludin. Mathematical Programming in Order Scales. Izvestiia Akademii Nauk SSSR,

Tekhnicheskaia Kibernetika, 2, 3-17. (Russian).

v L =N o
- ® r Z

Institute of Mathematics Received 20.07.1987
Bulgarian Academy of Sciences
1090 Sofia, BULGARIA

Yaroslavl State University
ul. Sovietskaia d. 14
150 000 Yaroslavl, USSR



