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Constancy Levels of Increasing Mappings of Some
Kinds of Ordered Sets

Duro R. Kurepa

0. At some occasions I had the opportunity to ask whether there exists a strictly
increasing function from the tree ¢Q of some bounded well-ordered non empty
subsets of (Q, <) into (Q, <) (see D. Kurepa, References < 1951).

0 :1. Finally, I succeeded to answer the question by the negative. The proof
was quite complicated and was backed on the proof that the tree 0Q was the
union of Al, antichains but not of Al, antichains (see [8 T. 3.1;9 TR. 1,10 Th. 3.1].

0 :2. A remarkable statement. Afterwards, I found a nice statement that
whenever

(0:3) (E, =) be an ordered set, then the tree

- (0:4) (w(E, =), <,) of all well-ordered subsets of (0 : 3) (including the empty
set v as well) is such that there is no strictly increasing mapping of (0 :4) into the
starting set (0 :3). The proof of this fundamental fact is unthinkingly simple
(see D. Kurepa [11]).

0 :5. In this note we shall exhibit a proof of a statement published in D.
Kurepa [10, Théoreme 3.1]' in a generalized version (see Theorem 1:0).

0 :6. Number I' (E, <). For an ordered set (E, <) we denote by I'(E, <) the
least ordinal number n which is strictly greater than the order type of every
well-ordered subset of (O :3).

0:7. We denote by w(E, <) (resp. ¢ (E, <)) the system of all well-ordered
(and bounded and non empty) subsets of (0 : 3) ordered by the relation <, “to be
an initial segment of”.

0.8. In n°2 we shall prove an interesting theorem concerning strictly
increasing functions on union of Al antichains into a subchain of (Pw,, <)
(see Theorem 2:1).

! Todorgevi¢ Stevo reminded me that no proof of this theorem was published.
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1. Statement of theorem

1:0. Theorem. Let a be any ordinal number and (E, <) any subset of the power
set (Pw,, <) such that

(1:1) ['(E, <)=T Po,=w,.,.

?f is any increasing mapping of (¢ E, <) into (h <), then the system S of all pairs
Vs ofpomts of 6 (E, =) for which | X =fy has a power > Al,(Al stands for the
Hebrew “alef™).

Proof. Assume, contrarily, that the statement 1 :0 does not hold and that
for some ordinal a and some subset (E, <) of Pw, satisfying (1 :1) the system S of
all 2-point-subsets of (E, <) in each of which an increasing function f:¢ (E, <)
into (E, <) is constant, has a power < Al,. Because of the condition (1 : 1) we infer
that the tree o (E, <) has a rank (=height) equal to w,,. Therefore, there would
be an ordinal n of second kind such that

(1:2) uSc(+,n],: =uUR; (i<n)
and that, consequently, in the remaining right section
(1:3) (n, +), : =UR;0, (M<i<wy+1)

the mapping f is strictly increasing.

Obviously, y(1 :3)=w,+,; =T (E, <) ; therefore there exists an ordinal r between n
and w, 4, and such that n+r=r. If we consider a point aeR, (1 :3), then we have
well-defined r-sequence of points b,=fa, (i <r), where a;<,a and g,eR, (1 :3). The
points b; constitute a well-ordered subset of f (1 :3). Now let us consider a
following function g on

(1:4) {v}Ue(E, =):

we set gv : =b, and {gR;(*, n)l,} =b;+(i=<n) ; then g would be strictly increasing
from {v}uUc to (E, <). In such circumstances, (E, <) has no last member, because
in the opposite case the tree (1 :4) would be identical to the tree w(E, <) and g
would be a strictly increasing mapping of w(E, <) into (E, <), contrarily to our
statement O :2.

Thus (E, §) has no last element ; in this case let us consider a new point p
and let us join p to (E, <) and convene that p follows all points of (E, <) ; let
(F, £):=(E, =)+{p}; then we would be able to exhibit a function
jlw(F, <)—(F, =), which would be strictly increasing, in contradiction with the
statement O :2. As a matter of fact, it would be sufficient to set, by definition,

jx=gx for x=v and for xeo(E, <)

jx=p for every well-ordered subset
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x of (F, <) such that p be the last point of X. Q. E. D. 1 :5. Since every linear set
(E, <) is order-imbeddable into (PQ, <), it is sufficient to consider the embedding

ecE-(Q, =) (-, o),

(Q, =) denoting the ordered set of rational numbers, the theorem 1 :0 implies

1:6 Theorem. Let (E, <) be any set of real numbers such that I'(E, <)=w, ;
if f is any increasing mapping of the tree

(1:7) (¢ (E, =)=,) into (E, =),

then the system S of all 2-point-subsets {x, y} of (1 :7) such that fx=fy has a power
pS> Al, (see D. Kurepa [10 Theor. 3]); pS : =power of S.

1:8. Theorem. The tree

(1:9) (w(e. =)=

is the union of Al, of its antichains, but is not a union of = Al, of its antichains (see
D. Kurepa [8 Theorem 2:1,9 Theorem 2 :1]).

Proof. If (1 :9) were a union of Al, of its antichains, then there would exist
a strictly increasing mapping f of (1:9) into (Q, <) (Theor. 1 p. 837 in
D. Kurepa [4]), contradicting the above main theorem 1 :0 for the case E=Q
(the condition I'(Q, <)=w, is satisfied).

2. A theorem concerning strictly increasing mappings
of unions of antichains

2 :0 Every ordered set is union of various systems of antichains ; e. g., every
tree T is union of rows R; T (i<yT) and each point te T belongs to a unique row
R,, T ; the mapping te T—yt is strictly increasing on T and its range is the chain of

all ordinals <yT (=the height of T). It is rather surprising that a very general
theorem holds like the following one.

2:1. Theorem. If an ordered set (1) (E, <) is union of Al, antichains ; (2)
A;(j<w,), then there is a strictly increasing mapping g of (1) onto a subchain of
(Pw,, <); the mapping

3) g :(E, £)-(Pow,, <)

is strictly increasing and the range gE is a chain; shortly speaking, g is a chain
embedding of (3), into (3),.
First one has

' 2:2. Lemma. Any ordered set (E, <) of power < Al, is orderrisomorphic with a
subset of (Pw,, <).
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In fact, since pE < Al,, there is a bijection b of E onto a subset F of numbers <, :
The mapping eeE—he : =(E, <) (-, €] is such an isomorphism ; in particular,
hE=F and obviously, b carries PE onto PF ; consequently, the composed
mapping bh carries isomorphically (1) onto a subset of (3),.

2:3. Proof of Theorem 2:1. For a representative of Al, we shall take
any w,-sequence of pairwise disjoint sets M, each of power Al ; let

4 M:=UM,M:=0uM; (iS)hIM~:=uM(i<j<w,).
Let
wi(j<wg B :=(Pw a normal well-order of PM.
5 iU 8 Pw,) be al 11-ord f P

Of course, since pM ;=pM, the power set PM is a cofinal subset in (5)- Let us now
prove the theorem; the proof will be carried out by transfinite induction
argument. Put

(6) A =0;4,05iSj<w,), A< 1 =, A (i<)).
Let us define also an w,sequence

() ' s,<i(i<w,)
of ordinals <w, and an w,-sequence

®) fili<w)

of strictly —-increasing mappings with strictly increasing domains. To start with,

let s,=0and letf, Ay : = {w,o}, i.e. for every xe 4, letfx : =w,, where i, is the first

member of PM, in the well-order (5). Suppose that 0<j<w, and that the left

j-segment s;(i< js of (7) is defined such that

(a) for every i<j the set A’ is mapped by a strictly increasing mapping f; onto a
subchain f; 4’ of (PM', <);

(b) if e<i<j, then f,= #f;;

(c) every pseudo-cut in f; A’ is of a power <Al,.

2:4. Definition. A pseudo-cut in a chain L is an ordered pair (A, B) of subsets of
L such that Uue 4L(+,allUpe g L[b,+) is a cut of L. A(pseudo-) cut is said to be of
power <Al, if each of its components A, B is of power Al,.

Let us define f; : On A</ let f; be f</ : =%, f; (i <j) ; f;| A; will be defined in the
following way. Every xeA; induces a cut

©) A(x)|B(x)
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in the set
(10) ;A

by induction hypothesis (c) the cut (9) is equivalent to a pseudo-cut C(x)|D(x) of
power <Al,; we define f;x as the first number of (5) which belongs to
P (v, M')(i<j) such that C(x)<= #f;x< #D(x), thus also 4 (x)= #f;x<= #B(x) ; if
such a J;x exists for all xe 4;, we put s; : =sups; (i < j) ; we do so also if j is limit. If
there is some xe A; such that f;x does not exist as was just described,we define s;
as sup (s;+ 1)(i<j) and f x as the first member y of (5) which belongs to PM?®j and
such that ynM,, be singleton.

The existence of such a y for xe 4; follows from the Lemma 2 :2 and from the
fact that the cut A (x)|B(x) is equivalent to some pseudo-cut, which is of power
< Al, (see condition (c)). Thus the induction procedure is going on for every j<ow,
and the function f|E : = U, f;| 4’(j <w,) is a strictly increasing mapping of (1) onto
a subchain of (PM, <). If h is any isomorphism of (PM, <) onto (Pw,, <), then hf
is a requested strictly increasing mapping of (1) into a subchain of (3),.Q. E.D.

2:5.Historical remark. For the particular case when v=0, the theorem
2 :1 was found in 1937 (see D. Kurepa [3 ; 4, Theorem]). To be sure, this result
concerned (Q, <) instead of (Pw,, <), but the present formulation of Theorem
2:1 for v=0 is easily implied from the fact that if (E, <) is union of Al,
antichains, then there exists a strictly increasing mapping f of (E, <) into (Q, <)
(see D. Kurepa [4, Theorem]). As a matter of fact there is an isomorphism s
between (Q, <) and a subset of (Pw,, <) :it is sufficient to consider any well-order
4o 4y5---» 45 - - (i<w,) of Q and for any geQ to consider the infinite set Q (-, g) of
all elements g;<g and the corresponding set quP‘,00 of all indeces i such that
q;=q; the mapping geQ —»>sqgePw, is an isomorphism. Therefore, the compound
mapping sf is a strictly increasing mapping of the countable union of antichains
into the subchain sQ of (Pw, <).

2:6. Remark. We stress the fact that the range of the mapping g in the
wording of Theorem 2 :1 is a subchain in the lattice (Pw,, <). As stated in n°
3 :4, if v=0, one can assume that the subchain (gE, <) is a part of some subchain
of type n in (Pw,, <)

How is the matter if v>0 (e.g, if v=1? (cf. Problem 2:7:12).

2:7. Chain (D,, <), tree T,. Chain (Q,, <).

2:7:0. We are going to define, for any ordinal v, a chain (Q,, =) which for
(v=0 b(;comes a chain similar to (Q, <). We formulate 2 problems concerning

9, =)
We denote by v any ordinal number.
2:7:1. Ordered chain D, (v ordinal).

Definition. D, : = W (w,)* + Ww,, where for any ordinal « we convene that
Wo : ={x :x is ordinal number <u}.

Thus (Do, <) is a chain similar to the chain (D, <) of rational integers.

2:7:2. Tree T,.
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Definition. The set of all non empty sequences of length <w,, of terms of D,
is denoted by T, ; this set is supposed to be ordered by the relation <, “to be
initial part of’; we get a well-defined tree (T,, =<,):=T, of power
Beco, A : = ALY 5240,

2:7:3. Chain (Q,, <): =0, is the set T, ordered by a relation < which
extends <, as well as the total ordering of every left node of the tree T, ; in other
words, if a,beT, we put a<b if and only if either a<,b or if a|, b and a,<b,,
where e : =e(a,b) is the least ordinal such that a,#b, and a;=b; for every i<e.

2:7:4. Lemma. (Q,, <) is order-dense. In fact, if a,beQ, and a<,b, then
a<,c<,b for any c such that c,,<b,,. If a|, b, then we have a determined first
node N such that a’,b’eN, a’'||, b’ and @' <, a, b’<,b. Then any c such that a’<; ¢
is located between a’,b’ and a forterio between a,b.

2:7:5. Lemma. Right character of any g is w}, because the set Ry,q of
immediate <,-successors of g is coinitial with (g, +)o, and thus is coinitial with wy,
irrespective whether q is a left limit point in a node of T or whether q is isolated in
the node Q|g| to which g belongs ; e.g., (—w) is right nodal limit of (—n) (n=1,
2,...) but Ry(—w,+)r, is located between (—w) and (—n) for positive integers n.

2 :7 :6. Left character of geQ. If the original height y, in T, is a limit ordinal,
so is g a limit point in Q,, of the same left character. If q is isolated and if the last
component of q is isolated in D,, then (Q,, <) (+,q) is cofinal with w, ; if the last
component of g is a left limit point of character w, in D,, then so is g in (Q,, <).

2:7:7. Lets:=sq,5y,...,5;,...(j <ys) be a maximal sequence of elements of
D,, such that (sg, sy, -,S;, .- .)i<; D, intersects both 4 and B : =CA of a given cut
A|B of (Q,, <). Then 0<ys<w,(ys denotes the ordinal length or height of s).

2 :7 :8. First case ys<m,. If ys is of the first kind, in particular if ys=1, i.e.
s=(so), then sD, intersects both 4 and B ; this implies a cut M|N of D,, where
M :{xeD,, sxD,c A ; thus s(x+1)D,=B; sxD, and s(x+1) D, are contiguous ;
thus A|B is a gap of character (®,, ®}).

If ys is of second kind, we have two subcases : First subcase : sD, intersects
both A, B ; then again A|B is a gap of character (w,, ). Second subcase : sD, is
either in A or in B.

If sD, is in A, then sD, is cofinal with A, thus 4 is cofinal with w, ; in this case
we have (so+1)D,, (So»5;+1)D,,...,(S0sS15--->8;+1)D,,...<B; this is a
decreasing sequence of sets the union of which is coinitial with B ; thus the
character of 4|B is the gap of (w,,7s); ts denotes the type of s.

Dually, if sD, is in B, one has a gap of character (s, w:) because sD, is
coinitial with B and the set (1) {x :xeD,, x<,s} is cofinal with A.

2:7:9. Second case : ys=w,,.

First subcase : s has no final part composed of 0’s ; thus s¢Q, ; in this case, s
represents the gap A4|B, and the set (1) is well-ordered of type w, and is cofinal
with 4. The sequence

h(so+1)D,,...,50,81-- h(s;+1))D, (j<w,)
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of strictly decreasing parts of B is coinitial with B ; thus the gap A|B has a
symetric character (w,,®}) ; here h(x+ 1) means :x+ 1 for xe Wo,, and 1+ x for
xeWw;.

Second subcase : The sequence s terminates with a right constant section
composed of O’s ; thus seQ, (let us remark that every member of Q, could be
obtained in this way on varying cut A|B); the right and the left character of s
were determined in n° 2:6:5 and 2 :6 :6 respectively.

2 :7 :10. Briefly, every cut A|B of (Q,, <) has at least one component of
character of power Al,.

2:7:11. Problem. Is the ordered chain (Q,, <) similar to a subchain
of (Pw,), =)?

 The answer is in affirmative for v=0, and for any strongly inaccessible w, (a
proof runs like the one for v=0 in n°2 :5) and similarly, for any regular w, under
the General Continuum Hypothesis.

2:7:12. Problem. If (E, <) is union of A4l, antichains, does there exist a
strictly increasing mapping of (E, <) into (Q,, <).

The answer is in affirmative at least for v=0 (see D. Kurepa [4)).
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