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In the present paper it is proved that a limit of an inverse system of non-empty R-closed spaces and
closed irreducible bonding mappings is a non-empty space.
If X ={X,,f,4 A} is an inverse system of R-closed spaces X, with open-closed mappings f,,, then

X =lim X is R-closed.

1. Introduction

Our main purpose is to prove non-emptyness and R-closedness of the limit of
an inverse system of R-closed spaces.

For the basic definitions and properties on inverse systems and their limits
the reader is refered to R. Engelking [7].

We say that an inverse system X = {X_, f.5, A} is well-ordered if the set A4 is

well-ordered.
In the sequel we use the next theorem from [3].

1.1. Theorem. Let X ={X,, f,5, A} be an inverse system of non-empty spaces X ,
such that for each o€ A there exists a family #, of the subsets of x, with the
following properties :

(I) If 2, is centred subfamily of £, then N{P :Pe?,}#Q,

(IT) The intersection of a members of #, is a member of S,

(ITX) If Spe gy B=0, then fo5(Sp)ef,

(IV) fa" (x,)e#, for each x,eX, and each B=a.

Then X=1limX is non-empty and for each a€A the relation
f:(X)=n{fp(X,) : =0} holds. L 3

A subset A of a space X is regularly closed (open) if A=int A (A=int A).

A mapping f:X—Y means a continuous function.

A mapping f:X—Y is regularly closed if f(A4) is closed for every regularly
closed 4= X.
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2. Inverse systems of R-closed spaces

A regular space X is R-closed [6] if X is closed in every regular space
containing X as subspace. ) ]

An open filter % is a filter [7:76] such that if FeZ#, then F is open.

An open filter # is regular if for each Ue# there is a Ve#F such

that V= U. .
A regular space X is R-closed [6] iff for each regular filter & its adherence

Nn{U :Ue#} is non-empty. ) _

A mapping f:X—Y is an irreducible mapping if the set
f*(U)={yeY:f~'(y)sU} is a non-empty set for each open non-empty set
UcX. If f:X—Y is a closed irreducible mapping, then f* (U) is open and
non-empty [7 :52].

We shall now show the following theorem.

2.1. Theorem. Let X ={X,, f.3,A} be an inverse system with the surjective
closed irreducible mappings f.s. If the spaces X, are non-empty R-closed, then
X =lim X is non-empty. Moreover, the projections f, : X —X,, a€ A, are surjective.

Proof. We shall show that for each point x,e X, there exists a point
xeX such that f(x)=x, where f,:X—X, is the natural projection. Let

#,={U,,: u,eM,} be a regular ultrafilter of open sets U, =X, such that
n{0 " :U“ae%a} ={x,}. The existence of %, follows from regularity of X,. For
every f#>a we consider the family = {f'(U,) Uuae%a}. The family %} is a
filter-base since f' (U"MnU;‘az):f.{,,l(U" )Nt (U”az).

a2

The regularity of %} follows from the regulariiy of %, and from the

implication VeU—fg' (V)=f3' (V)sf'(V)=f ' (U). Now, we prove that
there exists a single ultrafilter %, which contains %j. Let U, be an open subset of
X, such that every intersection Uynfz' (U, )=Uy, is non-empty. Then the set
f f,(U ﬂ"‘a) is non-empty and open because f,; is a closed irreducible mapping.
Hence, all the sets f%;(U,)nU uy Uy €% ,are non-empty. By maximality of %, it
follows that f*;(U,)e# . This means that f. ' [ (U,)e¥}. Moreover, we have
the inclusion fg!f* (6,,); U, This fact implies that there exists a single
ultrafilter %, containing %} since from U,nV,=Q it follows f ¥ (U,)nf%(V})
=@. Now, it follows that for each f>a there is a single point xz€ X, such that
x,,e{U,,’i IU“{’E%B}.. Moreover, from the fact that for y=f=a
Sa' (%)=f3" (U'p), it follows that f; (x,)=x,; This means that the obtained
points xz;€X, determine a point x of X =limX. The proof is complete.

2.2. Problem. Is it true that the limit X in Theorem 2.1. is R-closed?

2.3. Remark. If the space X in Theorem 2.1. are H-closed, then X is
H-closed [13].
In the sequel we use the following
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2.4. Lemma. Let f: X - Y be a closed mapping into regular Y. If X is R-closed,
then f~! (y) is R-closed for each yeY.

Proof. Let %' be a regular filter on ! (y). For each open U’e%’ there is
an open U such that U'=Un f~!(y). Let V'e%’ such that closure [V 1-1y<=U"
Let V be an open set in X such that V'=Vn~f~!(y). Suppose that V¢ U. Then
X\(V\U ) is the neighborhood of f~* (v)- From the closedness of f it follows that
there is an open set V,ay such that f~!(V,)< X\(V \U). From the regularity of ¥
it follows that there exists an open W,3y such that w yEV,. Then
ST (W,)=f 71 (V,). Consider the sets U,=Unf"'(V,) and V,=Vnf~'(W,).
Clearly, Unf'(y)=Unf"'(y)=U" and Vinf~'(y)=V’. Moreover,
ViSVnf T (W)sVaf ~H(W)sVaf ~1(V,)SU~Sf"*(V,)=U, since f~1(V,)
S X\(V\ U). We infer that each regular filter %’ on f~'(y) can be extended to a
regular filter % on X such that for each U’e#’ there is Ue% with U'=Unf "1 (y).
Moreover, each Ue# is the intersection U "N f ™! (V,) for some open U”< X and
some open V,3y. Clearly we may assume that % contains all the sets f “(V )

where V is a nelghborhood of y. Now, by R-closedness of X there exists a point
xeX such that xen{U : Ue%}. From the hypothesis that % contains the family
{f7'(V,):V, is a neighborhood of y} it follows that f(x)=y, i.e. xef ' (y).
Clearly, x lS an adherence point of %’ in f~'(y). The proof is complete.

2.5. Question : Is it true that closedness of f in Theorem 2.4. can be
omitted ?

Let X and Y be the regular spaces. We say that a mapping f: XY is
R-perfect if f is closed and f~'(y) is R-closed for each yeY.

2.6. Lemma. If f: X - Y is an R-perfect open mapping of a regular space X into
an R-closed space Y, then X is R-closed.

Proof. Let % be a regular filter on X. Then f(#%)={f(U) :Ue%} is the
regular filterbase on Y since fis open and closed. By R-closedness of Y there exists

a yeY such that yen{f(U):Ue#%}. We now prove that for each UeZ the
intersection f ™! (y)nU #@. Namely, if f~!(y)nU =@ for some Ue%, then by
regularity of # it follows that there exists a Ve# such that V=U and

SHy)nV=0. ‘ .
By closedness of f it follows that there is an open set V,3y such that

f7Y(V,)nV=. This means that V,nf(V)=@. This is in contradiction with
yen{f(U):Ue#}. Now, the family U ={Unf"'(y):Ue%} is a regular
filterbase on f ~!(y). Since f~!(y) is R-closed, there exists an xef = (v) such that
xe{Unf~!(y):Ue#}. Clearly, xen{Unf ~'(y):Ue%}. This means that
N{U :Ue%}+#0. The proof is complete.

For an inverse system X ={X, f,5, A} with open and regularly closed
projections f, : X —»X,, a€A, we prove
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2.7. Theorem. Let X ={X,, f.3, A} be an inverse system of R-closed spaces X,
such that the projections f, :lim X —» X, a€ A, are open and regularly closed, then
the limit X =1lim X is R-closed.

Proof. Firstly, X is regular since X, oe€A, are regular. Secondly, let
% ={U, :pe M} be a regular ultrafilter of open sets in X. For each aeA let %, be
a family of open sets U, m X H,€M, such that U, 2f, (U,) for some U, e%. ThlS
family is a regular ﬁlter since VS U< X implies fa( V)<=f,(U) (f,, x€ A, are open
and regularly closed). By virtue of R-closedness of X, it follows that
Y,= n{ﬁ ug U“ae%a} #0. Let x, be a point of Y,, and let ¥ be an open set about
x,. We prove that %, converges to x, Namely, if there is an Ue% such that
fZ1(V)AU =, then f7 X (V)nU =Q. Since for open f, equality f; ' (V )=fz (V)
[7 :57] holds, we have fi!(V)AU=@. This means that f, (U)n V=0, i.e.
X,— Vea, This is in a contradiction with x,en%, This means that
1 (V)AU#0 and f; ' (V)e#, i.e. Ve%,. Now, for every ae A we have the point
x, such that %, converges to x,. It is readily seen that f,;(xz)=x, for f=a. This
means that x=(x,) is a point of X =lim X. Clearly, % converges to x. The proof is
complete. The next theorem is closely related to the corresponding theorem
for inverse system of H-closed spaces [20]. '

2.8. Theorem. Let X ={X,, f,3, A} be an inverse system of R-closed spaces X,
such that f,5 are open and closed surjective mappings. Then the limit X =lim X is
non-empty iff all spaces X, ac€A, are non-empty.

Proof. Let #, ae A, be the family of all regular filter-base of open subsets
of X,. For each F, eﬁ the set ad F,=ad {U UeF,} is a non-empty closed set
since X, is R- closed. Moreover, ad F,=n{U :UeF,}. Let #, be a family
{© }u{ad F,:F,e%,}. We prove that .#_ satisfies the conditions (1)—(1V) of
Theorem 1.1. If {ad F, :peM} is centred family, then # ={U :UeF,, peM} is
regular filter-base. By virtue of R-closedness of X, it follows that ad is non-empty
and ad Ze@, since ad #=n{U :Ue¥ }=n{adF,:peM}. The family &,
satisfies property (I). We prove property (II) as follows. Let {ad F, :F, 637 . bea
subfamily of .#,. If n{ad F, % :F, eJ } =@, then property (II) is proved since
{© }es, If m{adF :F, € o= Y;EO then from yeY it follows that yeU for
each UeF, ap Fa 69" since ad F .=n{U :UE€F, } n{U :U€eF, } This means
that {adF F eZ,} is centred family. Argumg as in the proof of property (I)
prove property (MII) In order to prove that property (III) is satisfied we recall that
f.s are closed. Let Sye#, and let F; by a regular filter-base such that
Sp=n{U :UeF,} ={U :UeF,}. We prove that f;(S;)=n{fas(U):UeF,}
=n{fp(U):UeF,}. Clearly, f,5(S;)<={fep(U):UeFz}. Let x,en{fy(U)
:UeF,;} and let ¥, be a family of all neighborhoods of x, Then
W =Fpnfap' (#,) is regular filter-base. Since X, is R-closed,we have ad # #0
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and ad # =S, fyp(ad #)=x, This means that x,ef,5(S,). It follows that
Jap(Sp)=0{fap(U) :UeF, }e.#,. Hence, 4, satisfies the property (III) of Theorem
1.1. Property (IV) follows from the relations fz' (x,)=n {f5'(U) : Ue¥",}. From
Theorem 1.1. it follows that X =lim X #@. The proof is complete.

Let us recall that it is proved in [9] that lim X #@ if X is a well-ordered
inverse system of non-empty R-closed spaces and surjective bonding mappings.

If the mappings f,; are open, then Y=n {f,5(X,) : =} is non-empty since
X, is R-closed. Moreover, f,,,(Yﬂ)= Y,, B=a. The proof is similar to the proof of
the property (IV) in Theorem 2.8. From this it follows

2.9. Theorem. If X is an inverse system of non-empty R-closed spaces and open
perfect bonding mappings, then X =lim X #0.

2.10. Corollary. Let % ={U, :peM} be a centred family of closed and open
R-closed sets in X. If Y={U, :ueM} is open, then Y is R-closed. In particular,
each closed and open set of an R-closed space X is R-closed.

By virtue of transfinite induction we have

2.11. Theorem. Let X be a well-ordered inverse system of non-empty R-closed
spaces and open bonding mappings, then X =lim X #Q.

We shall show some theorems concerning the connectedness of the space
X=IlimX.

Let us begin with the following simple

2.12. Lemma. Let X ={ X, f,5, A} be an inverse system with open and regularly
closed projections. If the spaces X ,, a€ A, are connected, then X=1im X is connected.

Proof. If X is not connected, then there exists closed and open set F such
that® # F # X. For each a € Af(F) is closed and open. From the connectedness of

X, it follows that f,(F)=X, It follows that F=X since F=I1im {f,(F),

Jap/f3(F), A} [7:137]. The contradiction F# X AF=X completes the‘_proof.

2.13. Theorem. Let X ={X, f.5, A} be an inverse system of regular connected
spaces X ,. If the projections f, X —X,, a€ A, are surjective monotone mappings and
if X is R-closed, then X is connected.

Proof. If X is not connected, then there exist two non-empty closed sets F,,
F, such that F . nF,=Q, F,UF,=X. For each aeA4 we have f,(F,)0f,(F,)=X,
and f,(F,)uf,(F,)=X,. Suppose that x,€f.(F,)nf.(F,). Let %, be a filter of all
open neighborhoods of x,. Then the traces of f; !'(#%,) on F,, F, are the regular
filterbase. Since F,, F, are R-closed (2.10. Corollary), there exist points y, and y,
which are in the adherences of these filter-trace. Moreover, y,eF,; and y,eF,. On
the other hand, we have f,(y,)=x,, f(y,)=Xx, This means that f; ' (x,)nF,#0,
and f; ' (x,)nF,#Q®. This is impossible since f, ' (x,) is connected. The proof is

complete.
From the proof it follows that, in fact, the following theorem is proved.
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2.14. Theorem. Let X be R-closed and f:X—Y a monotone mapping onto
regular Y. The space X is connected iff Y is connected.
Theorem 2.14. can be proved by virtue of Lemma 2.12. and the next

2.15. Lemma. Let f: X — Y be a monotone regularly closed mapping of space X
onto a regular connected space Y. Then X is connected.

Proof. Suppose that X is not connected. Then there exist two disjoint
closed sets F,, F,<X such that F,UF,=X. Clearly, f(F,)uf(F,)=Y. We now
prove that f(F,)nf(F,)=@. Namely, if yef(F,)nf(F,), then f~*(y)nF,+0 and
S (y)nF,#@. This is impossible since f~'(y) is connected. Hence,
S(F)nf(F,)=Q and f(F,)Uf(F,)=Y. The last two relations are in contradiction
with connectedness of Y. The proof is complete.

We say that a space X is strongly minimal regular (shortly, SMR) [6] iff there
is a base £ for X such that each member of # has an R-closed complement.

2.16. Theorem. Let X ={X, f.5, A} be an inverse system of SMR spaces X,
such that the projections are open and closed. Then X =limX is SMR.

Proof. Let #,, a€ A, be a base for X, such that X, — V, is R-closed for each
V.e#, Let # be the standard base for X =lim X. This means that for.each Ve#
there is an open V,e 4, such that f7 ' (V,)=V. Clearly, X —V=1lim {X; —f " (V.).
fpy ®<B=<y}, where f,, is the restriction of f, onto X, =fa! (Vo)

The mappings f, are open and closed [7 :95]. From Lemmas 2.4. and 2.6. it
follows that X, —f 5" (V,) is R-closed, f=a. Finally, from 2.7. Theorem it follows
that X —V=I1im{X;—f5"(V,), fup ®<B=7} is R-closed. This completes the
proof.

2.17. Theorem. Let X ={X,, f.5, A} be an inverse system of MR spaces X, such
that the projections f, : X - X ,, o€ A, are open and regularly closed. Then X =lim X
is MR.

Proof. Since X is R-closed (2.7. Theorem), it suffices to prove that each
regular filter-base on X which has a unique adherent point is convergent. Let be
a regular filter-base of open sets of X which has a unique adherent point xeX.
For each aeA let %,={f,(U):Ue#} be a filter-base of open sets of X,. The
filter-base %, is regular since f,, a€ 4, are open and regularly closed. This means
that f,(x) is an adherent point of %,. We now prove that f,(x) is the unique
adherent point of #,. Let x,#f,(x) be an adherent point of %,. We consider a
filter-base # v f; ' (A,), where A", is the filter-base of all neighborhoods of x,.

Clearly, x is the unique adherent point of ZUf; *(A4",) since X is R-closed. This
means that x is an adherent point of f; ' (4",) and, consequently, f, (x)=x,. This
is in contradiction with x,#f, (x). It follows that %, is convergent. Thus, each
openU,= f,(x)is a member of %,, i.e., there is an open Ue% such that f, (U)< U,.
We infer that f,; ! (U,)2U. Since each neighborhood of x at least contains a set of
the form f,;'(U,), it follows that % converges to x. The proof is complete.



178 Ivan Loncar

A regular T,-space X is said to be R-functionally compact [9 :446] if for each
T, regular space Y and each mapping f from X onto Y, fis closed. It is known
that a regular T, space X is R functionally compact iff for each closed set F in X
and each regular filterbase % for which F=n%=n%, % is a neighborhood
filterbase for F.

2.18. Theorem. Let X ={X,, f.p,A} be an inverse system of R-functionally
compact X, such that the projections are open and closed. Then X =lim X is
R-functionally compact iff the following condition (S) is satisfied : (S) For each pair of
disjoint closed sets F,, F, < X such that F,=nN% =%, for some regular filterbase
U, there exists an a€eA such that f,(F,)nf,(F,)=Q.

Proof. If (S) is satisfied, then for every regular filterbase % such that
F=n%=n% and an open U S F there is an a€ 4 such that f, (F)n f,(X —U)=0.
This means that Y,=X,—f,(X—U) isaneighborhoodoff,(F). Let f, (%)
={f(U) : Ue#} be a regular filterbase (f, is open and closed). We now prove that
fo(F)=nfi(@)=nf,(@). Clearly, f,(F)=nf,(%). For each x,enf, (%) we
consider  the filterbase 47, of all neighborhoods of x, The family
VYV =Uof; ' (N,) is regular filterbase. Since' X is R-closed (Theorem 2.7), it
follows that there exists an xeX such that xen¥ . This means that xeF and
f.(x)=x,. Now we have that f,(F)=nf,(#%)=nf,(%). Since X, is R-functionally
compact, there is a U,ef, (%) such that U,=Y,. This means that f;'(U,)<U.
Since U,ef, (%), there is Ve#% ‘such that f,(V)=U,. Finally, we have
Vefi'(U)<EU, i.e, % is a neighborhood filterbase for F.

Conversely, let X be R-functionally compact. Let F, and F, be as in (S). We
consider the family ¥ ={f; ' f (%) :acA}. ¥ is a regular filter-base such that
F,=n¥ =n¥". Since X is R-functionally compact, there is an aeA4 and an
U.ef: ' f.(#%) such that U,= X\F. There exists a Ue% such that U,=f;"' f,(U).
From f;'f,(U)sX\F, it follows f,(U)nf,(F,)=@. Since U2F,, we have
S2(F)nf,(F;)=@. The proof is complete.

A topological space X is called a lightly compact space if every countable
centred family {U,:U, is open in X, neN} has non-empty intersection
{U,:neN}.

Every R-closed space is lightly compact [15].

We say that a mapping f:X—Y is semi-open if f is continuous and Int

f(U)#Q® for every non-empty open subset U of X.
The proof of the following Lemma is routine.

2.19. Lemma. Let X={X, f.5,A} be an inverse system with surjective
projections. The projections f,:X=lmX—>X_, are semi-open iff the bonding
mappings are semi-open.

Now we prove
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2.20. Theorem. Let X ={X, f,3, A} be an inverse system of R-closed spaces X,
with perfect semi-open mappings f,5. Then X =lim X is lighty compact.

Proof. Let ={U, :neN} be a centred family of non-empty open subsets
U, of X. By virtue of Lemma 2.19. it follows that {Intf,(U,) :neN} is a centred
family of non-empty open subsets of X,. Since X, is lightly compact, it follows
that the set ’

(1) Y,=n{Intf (U,) :neN}
is non-empty for every aeA. Let us prove that
() Jes(Yp)=Yp, B2t

For every point y,€Y, the sets Zg ,= f" (v,)nInt fz(U,) are non-empty sets since
from the closedness and semi-openness of f,; it follows that f,s(Intf,(U,)
=Intf,(U,), neN. The family {Z; ,:neN} is a centred family of closed sets in the
compact “space fg'(y,). It follows that there exists some point yg€fap' (Va)
~(n{Z,:neN}). This means that yseY,=n{Intf,(U,):neN} and that
Jas(¥s)=V, i.e. (2) is proved. The inverse system

(3) Y={Y,, fap/ Yp A}

has non-empty limit Y since f,5/Y, are perfect surjective mappings. It is easy to
prove that YS{U , :neN}, i.e. ~{U,:neN}#@. Hence, X =lim X is lightly
. «—

compact space. The proof is complete.

2.21. Theorem. Let X ={X, f.5»A} be an inverse system with perfect
irreducible mappings f,5 and R-closed spaces X,. Then X =lim X is lightly compact.

Proof. The closed irreducible mappings are semi-open mappings. Hence,
Theorem 2.21. follows from Theorem 2.20. Let us observe that (2) holds under the
weaker assumption that f'(y,) is m-compact, m= \,, for every y,eX,.

From [11] and [14] follows that lim Y, is non-empty, where Y is the inverse
system (3), if f4'(y,) is countably compact and A= N, or A=W, =the set of all
countable ordinals.

Let as recall that a mapping f:X—Y is pseudo-perfect if f is closed and
S~ '(y) is countably compact for each yeY.

From the above observations we shall deduce the following theorems.

2.22. Theorem. Let X ={X,, fum N } be an inverse sequence with pseudo-perfect
semi-open (irreducible) mappings fum. The limit space X =lim X is lightly compact if
the spaces X,, neN, are R-closed.
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2.23. Theorem. If X ={X_,f.5, W} is an inverse system with pseudo-perfect

semi-open (irreducible) mappings f,5, then X =lim X is lightly compact if the spaces
-
X, aeA, are R-closed.

2.24. Theorem. Let X be an inverse system {X,, fup, 0.} or {X, fap, @41} With
closed semi-open (irreducible) mappings f,s such that the fibers fq45'(x,), X, €X,,
B> a, are o ~-compact. The limit space X =lim X is lightly compact if the spaces X ,,
a€A, are R-closed.

A mapping f:X—Y has the inverse property if f~*(V)=f"1(V) for each
open set V=Y.

A set A is o-directed if for every countable family {«; :ieN, ;e A} there exists
an aeA with the property a=a,ie N. We close this section with the following
theorem.

2.25. Theorem. Let X ={X_, f,5, A} be a o-directed inverse system of R-closed

spaces X,. If f.p are mappings with the inverse property, then X =lim X is lightly
compact. -

Proof. Let ={U, :neN} be a centred family of non-empty open subsets
of X. For each U, there exists a maximal non-empty open subset U, , S X s With
the property fzm)(Uan) < U,. Since 4 is o-directed, there exists an ae A such that
a=oa(n), neN. It follows that we can assume that the sets U, , are the subsets of
some X, Since X, is lightly compact (as an R-closed space), it follows that
A{U o0 :neN}#0. Applying the inverse property of f,, we have
A{fs ' (Usn) :neN}=n{fz" (ﬁ,_,.)neN} =f;1 (n{l_j,_,, :neN})#0. Since n{_ﬁ"
:neN}2{f: "(U ..) :neN},it follows that N {U , :neN}#0. Hence X is a lightly
compact space. The proof is complete.
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