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Semi-Infinite Optimization. Existence
and Uniqueness of the Solution

Georgi Christov, Maxim Todorov

Presented by P. Kenderov

Necessary and sufficient conditions for the existence and uniqueness of the solution of an optimization
problem ~with linear goal function are found. The structure of the set of linear semi-infinite
optimization problems for which the solution is unique is also discussed.

0. Introduction

Let R" be the usual n-dimensional Eucledean space, X =R"” be a closed
convex set and peR" be a vector.
For each pair (p, X) we define the optimization problem :

(*) min {M{p, x) :xeX}. *

In the present paper we have found necessary and sufficient conditions for a
solvability in the case of this general setting as well as a sufficient condition for the
uniqueness of the solution of ().

Let T be a Hausdorff compact space. Consider the set of all triples
o=(B, b, p)ed, where B:T—R" and b:T—R are continuous mappings; i.e.,
B={C(T) % C(T)x R"}

C(T) is the space of continuous functions over the compact T with the usual
sup-norm.

For each o=(B,b,p)e0 as in [1, 2] we consider the linear semi infinite
optimization problem :

o :min {{p,x) :{B(t),x>=b(t) for every teT}.

The problem o is obviously a special case of the problem (*).

In the set 0 we introduce the norm
loll=1Bllo+1blls+lplgm where | Bllp=max, 7l B(t)llgn bl
=max, r|b(t)| and | pllgr is the usual norm in R". This norm turns 0 into a
Banach space and generates in 0 the natural Cartesian product topology.

The main results in this paper concern some topological properties of the
sets :
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L={oef:0 has a solution}
LU ={ceL:o has an unique solution}.
It turns out that the set LU contains an open and dense subset of L. This
assertion is a generalization of a theorem given in [3] and completes (in some
sense) G. Nurnberger’s investigations [4, 5] of this topic.

1. Existence and uniqueness of the solution
We consider the optimization problem (*).
min {{p,x) :xeX }.

Some definitions follow : )
With ext X we denote the set of extremal points of X, with rec X — the

recession cone, and with rint X — the set of relatively interior points of X.
If K is a cone,then K* is the dual cone of K.

1.1. Proposition. Let X be a closed convex cone. If X #D and peint (rec X)*,
then the problem (*) has a solution.

Proof. It is easy to prove that for every aeR the set Z=Xn{x :{p,x)ga(z}
is compact. Then an assertion follows immediately. The proposition is proved.

1.2. Theorem. Let X be closed convex set. X #(Q and K=recX. Then

a) If the problem (*) has a solution, then peK".

b) If perintK*, then the problem (*) has a solution.

Proof. a) Let (%) have a solution then {p,z)» =0 for every zeK, i.e. peK*.

b) Let perint K*. If rint K*=int K*, then from the proposition 1.1

follows that the problem (*) has a solution. Let int K*=Q, i.e. extX=Q,
S§=Kn(—K) is a recession subspace of X. X,=XnS" and K, =KnS™*. Since
perint K*, then {p,s)=0 for all seS. Consequently {p,s)>=0 for every s€S, i.e.
the problem (*) is equivalent to the problem

(**) ' min {{p, x> :xeX,}.

K{=K*+S and int K} =rint K*+S so that peint Ki. By a proposition 1.1 the
problem (*+) has a solution, i.e. the problem (*) has a solution as well. The
theorem is proved.

Remark. The condition peK* is not sufficient for a solvability of the

problem ().

1.3. Definition. Let X be a closed convex set and xeX. The set
D (X, x)={z : there exists a>0 such that x+azeX} is called a cone of the feasible
directions.

This cone has interesting properties listed below :

1. D(X,x)={z :z=A(y—x); yeX, A=0}.

2. D(X,x) is a convex cone.

3. dim D (X, x)=dim X.

4. xeext X iff D(X,x)n{—D(X,x)}=0.
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As a consequence of the well-known, “Pshenichnii’s condition” [6], we obtain
the following.

1.4. Theorem. x € Argmin {{p,x)> xeX} if and only if xeX and GD‘(ﬂ\’,x.
Proof. Let x be a solution of (*). Then for each zeD(X,x) holds
{p. z> 20,.e. peD*(X, x). Conversely, let peD* (X, x). If we assume that there is
yeX with {p,y> <p,x), we obtain y—x eD (X, x) and {p,z>=<{p,y>—<{p,x» <0
which is a contradiction. The proof is completed.
Now we are able to give a promised characterization of the unicity in (*).

1.5. Theorem. If x € X and peint D* (X, x), then {x} =Argmin {{p,x) :xeX}.

Proof. By a theorem 1.4. holds that x is a solution of the problem (*). Let
there exists a solution y#x of the problem (*), then z=y—xeD(X,x) and
<p,2>=<p,y>—<p,x>=0

The assumption peint D*(X,x) implies {p,z)>>0 for all zeD(X,x) which
leads to a contradiction. The theorem is proved.

Remark. In general the converse statement of a theorem 1.5. is not true.
2. Infinite polyhedral sets

In the context with the investigations in the linear semi-infinite optimization
we have to work with the feasible sets of the optimization problems. Therefore we
discuss various properties of them.

Sets of the following type are considered :

Q={x:{(B(t),x>=b(t) for every teT}.

Obviosly Q is a closed convex subset of R".
We will need some notations.

L (xlg)={y: ly—xll<e}=0,(x)

2. [xlel={y :ly—xl=e}=0,(x)

3. W={B(t) :teT}

4. T,={teT :there exists xeA with (B(t),x>=>b(t)}

5. W,={B(t) :teT,}.

2.1. Lemma. Let A be a compact subset of R". Then T, and W, are compact.

Proof. Let {t,},=T, and limt,=t,. Since t,eT,, then there exists x,e 4
such that (B(t,),x,>=b(t,) for all a.

By the compactness of A we obtain that lim x,=x, and x,€A4. Having in
mind the latter, we conclude {B(t,),xo>=>b(to), i.e. t,eT,. The assumption
BeC"(T) completes the proof.

The following assertions are evident :

6. For an arbitrary subset X of R" we have X*=(ray X*) and X**=cone X.

7. Let K=recQ, then

1.° zeK iff (B(t), z>=0 for all teT, i.e. K=W"*.

2.° K is a pointed cone iff rank W=n.
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Next we consider some useful properties of the cone of feasible directions.
If deD (R, x), then (B(t), d> =0 for each te Ty, but the opposite assertion is
not valid, i.e.,

D(Q, x)c {B(t) ‘te T{x)}‘ = W(‘x}'
2.2. Lemma. If xeQ, ye(x|e) and {B(t),y>=b(t) for all te T, then yeQ.
Proof. Let yeQ. Then there exists t,eT such that {B(t,),y> <b(t,). But
{B(t,),x»=b(t,),so that there exists a point z from the segment [x, y] with the
property {B(t,),z> =b(t,),ze(x/e), i.e. t, € T(x.). This is, however, a contradiction
to the assumption. The proof is completed.

2.3. Proposition. If there exists >0 such that {B(t),d) =0 for all te T y,;), then
deD(Q,x) i.e.,

Wisa={B(t) :t€ T} =D (@, x).
Proof.Let|d||=1and0<d, <J, then x+J,de(x/d) {B(t), x+ 6, > =<{B(t), x>
+6,<{B(t),d>=b(t) for every teT(x,‘,,
Following lemma 2.2. we get that x+6,deQ i.e. deD(Q, x). The proposition
is proved.

24. Lemma. If {B(t),d)>0 for all te Ty, then there exists 6>0 such that
{B(t),d>=0 whenever teTyy;.

Proof. Let us assume that for each k=1, 2,... we can find t,‘eT(x, 1/k) so
that {(B(t,),d> <O.

Let x,€(x, 1/k) be such that {(B(t,),x,>=b(t,). Since T is a compact space,
there exists a net {t,},={t,}i>, which converges to some teT. Now we get
immediately <B(t), d)<0 and {(B(t), x>=b(1), i.e. T €T, This contradiction
leads to the assertion. The next theorem is a direct consequence of lemma 2.4 and
proposition 2.3.

2.5. Theorem. If {(B(t),d)>>0 for all teT,,, then deD(Q,x).
A characterisation of the extremal points of the set Q is given by

2.6. Theorem. If xeertQ, then for each >0 holds rank W, =n.

Proof. We assume there exists £¢>0 such that rank W, <n. Then we can
find heR", ||h||=1 so that {B(t),h)=0 for all te Ty,

By the continuity of the mappings B and b and by the compactness of the set
T\T(, we conclude that there exists >0 such that (B(t),x>=b(t)+t for each

teT\T ). /t=min {{B(t), x> —b(t),te T\T(r/}/-
Next if we restrict 0 < <t/max, r | B(t)|,then for all t € T\ T, we obtain
{(B(t), +6h>=(B(t),x>+6<B(t), +h) =b(t)+t—max, r| B(t)| =0,

i.e. iheD(Q,x). Thus we get a contradiction. The theorem is proved.
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3. Slater condition

For various profound results in the linear semi-infinite optimization the
Slater condition turns out to be the most important. In this section we present
some properties of the problems for which the Slater condition is fulfilled.

First we give some useful definitions :

1. Let f=(B,b). We put

Q={xeR":{B(t),x>=b(t) for every teT}.

2. y={B=(B,b) :BeC"(T), beC(T)}.
3. In ¢ we consider the norm ||| =| B|l, + || b |l - This norm generates in ¥
the natural Cartesian product topology.

3.1. Definition. The Slater condition is fulfilled for Bey, i.e. B€S if there exists
xeR" such that {B(t),x>>b(t) for all teT.

3.2. Lemma. If BeS, then there exists xeR" and 6>0 such that
{(B(t),x>=b(t)+6 for every teT.

Proof. This lemma is a consequence of the definition 3.1 and because T is a
compact and (B,b) are continuous mappings.

3.3. Proposition. If fey and Q;#Q, then B,=(B,b—¢)eS for each £>0.
Proof. Let xeQ,i.e. (B(t),x> 2 b(t) for all te T. Then {B(t), x> = b(t)—e& for
every te T. Consequently, f,eS. The proof is completed.

3.4. Corollary. S is a dense subset of the set {Bey :Q,#Q]}.

3.5. Theorem. BeS iff intQ,#@® and O€E {[B(t),b(t)] :teT}.

Proof. a) Let BeS. By lemma 3.2 there exists xeR"” and >0 with
{(B(t),x)=b(t)+6 for all teT, from what follows that [B(t),b(t)]#0"*" for
every teT.

Let y=x+¢&h, where heR", |h||=1 and £¢>0. Then

<B(t),y>=<B(t),x>+e<B(t), >z b(t)+5—e | B.

For ¢€lo,6 || B||] we have {B(t), y> = b(t) for all teT, i.e. yeQ,. Thus xeint Q,.

b) Let xeintQ, and O€ {[B(t),b(t)]teT}. We assume that for some teT
holds <B(t),x)=b(t). Then for every e>0 <B(t),x—eB(t)>=<B(t),x>
—&e(B(t), B(t)>=b(t)—e||B(t)I*<b(t), i.e., x€ int Q,. But this is a contradiction.
The theorem is proved.

An analogous result is reported in [7].

3.6. Theorem. If BeS and x€Qy, then co W ,, is a compact set and O€ co W4,

Proof. If Wi, =0, then the assertion is evident.

Let W,,,#Q. Since BeS, there is x,e R" with (B (2), x> >b(t) for every teT.
Consequently, for the direction d=x,—x the relations (B(t),d>=<{B(t),x,>
—<B(t),x>>b(t)—b()=0 for all teT, hold.
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If z=%}{_,a;B(t;), where 2,20, Zf_,o;=1 and B(t)eWi=1,5, then
{(z,d>=Zi_, a{B(t;),d>>0. Thus z#0, i.e. OEco Wiy

Since W'(’,,} is a compact set, we conclude that co W{,} is also a compact set.
The proof is completed.

The following assertion is an evident consequence of the previous theorem.

3.7. Corollary. If feS and xeQ,, then cone W, is a closed, convex and
pointed cone.

3.8. Corollary. If feS and xeQ,, then D (Qx)= W s,
Proof. With theorem 2.5. and corollary 3.7. we get int W{‘,) <D (Q,,, X} W{‘x)
and int W{‘,) <D (Qpx)=W {',) respectively. But int W(‘,) =W, = W{‘,,) which

==
implies D (£, x)=W(‘x). This completes the proof.
3.9. Corollary. D*(Q, x)=cone W, and if BeS,then D*(Q, x)=cone W,,.

3.10. Corollary. Let Kz=recQ; Then K j=cone W.
3.11. Theorem. S is an open subset of .

Proof. It has to be proved that for any feS there exists 6>0 so that
0;(p)<=S. s

Let BeS and B=(B, b)eO,(p) for some 6>0. There exists xeR" and §,>0
such that {(B(t),x>—b(t)>4, for all teT. _

Whenever 0<8<4,/(|| x| +1) is fulfilled, then the relations (B (), x> —b (t)
={B (t)—B(t),x>+<B(t),x)—b(t)+b(t)—b ()=, —6 | x|| —6>0 are valid. The
proof is completed.

With the corollary 3.4. and the preceding theorem we obtain immediately
that S is an open and dense subset of the set {fey :Q;#Q}.

4. Linear semi-infinite optimization problems

In this section we present several important results, concerning linear
semi-infinite optimization, which are consequences from these given in
paragraph 1.

For each o=(B,b, p;eﬂ we put

Q,={xeR":{B(t),x)=b(t) for every teT}

W,={B(t) :teT}

W,(A)={B(t) : there exists xeA with (B(t),x>=b(t)}

K, ,=recQ,.

We say that o =(B, b, p)eS if B=(B, b)eS, i.e. the Slater condition is fulfilled.

Furthermore, we know that

K,={B(t) :teT}*=W3

K ;=cone {B(t) :te T} =cone W,

D(x)={B(t) :teT4}*=W;(x)

cone W, (x)=cone{B(t) :te T (s} = D ;(x).

If o€S,
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D ,(x)=W;(x) and Dj(x)=cone W,(x) respectively.
Using the theorem 1.2.,we derive directly the following :

4.1. Theorem. Let Q, #Q.

a) A necessary condition for a solvability of the problem is pecone W,.
b) A sufficient condition for a solvability of the problem o is perintcone W,.
Next, we formulate the Brosowski’s theorem from

4.2. Theorem. For oc€S the following two statements are equivalent :
a) xeArgmino
b) There exist t,€T ), %;20, i=1,...,q,q<n such that

A similar result can be obtained using a theorem 1.4.

4.3. Theorem. Let x€Q,. If pecone W (x), then xeArgmin . Conversely, if
xeArgmino and in addition c€S, then pecone W,(x).

Proof. Since cone W,(x)=D ;(x), then peD ;(x) and with theorem 1.4. we
obtain geL. To see the inverse statement we make use of the fact that if 6€ S, then
cone W, (x)=D ;(x). This completes the proof.

The theorem 1.5. in the terms of o reads as follows :

4.4. Theorem. If xeQ, and peintcone W, (x), then x=Argmino.

5. Uniqueness of the solution in the linear semi-infinite
optimization

In the last paragraph we prove that the majority (in the sense of Baire
category) of the linear semi-infinite optimization problems have at most one
solution. In this section we require that |T|=n.

Let us denote

IN={BeC"(T). rank W=nj}.
5.1. Proposition. The set Il is an open and dense subset of C"(T).
Proof. Let B be an arbitrary element of C"(T). We fix both £>0 and the
different points {¢;}7-,<T.

Next we consider the vectors {B(t,)}7=,. Let B(t,),..., B(t,) be the maximum
number of linearly independent vectors in the previous system and N be the linear

subspace generated of them.
The vectors By 4+ 4,..., B, are basis of the orthogonal complement N. Now we

define the continuous vector function B° in the following way :
B°(t)=0, i=1,...,k; B°(t)=B, i=k+1,...,n
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Furthermore, we put B,=B+¢B°/|| B°|.
Evidently rank {B,(t;): i=1,...,n}=n, i.e. Byell
Having in mind that |B—B,|=|¢B°/||B|l, we obtain that IT is a dense

subset of C"(T).
With the continuity considerations we conclude that there exists a

neighbourhood Y of B, such that for each B,eY holds {B,(t): i=1,...,n}=n.
The proposition is proved.
We define the sets

I'={ce0 : BeIl}
S={ce0 : =(B,b)eS}
ST=SAT
®={ceb :Q,#]}.

By a proposition 5.1. and a theorem 3.11. we get that I" is an open and dense
subset of 0 and S is an open and dense subset of ®.

5.2. Theorem. The set ST is dense in L.

Proof. Let oeL. We fix ¢>0. According to theorem 4.1 it follows that
pecone W,. Consequently, there exists P*=X{_, «, B(t;), where ,>0, i=1,...,q,
g=n and |p—p°| <¢/8.

Since ST is an open and dense subset of ®, L < ® and with continuity
considerations, we can find o,=(B,, b,, p,)eST such that || B— B, || <&/(4a max;a,),
where a=q and amax;o;=1. ||[b—b,| <e/4.

p,=Z{-1;B,(t)+p/(8 | pl), where peintcone W, (rank W, =n).
Obviously, p,eintcone W, ; therefore by theorem4.l. o,€L.
le—a,| =IB —B,l +llb—b.l+lp — p. |l <¢/(4amax, o)+ /4
+lp—p° I+ p*—p. || <e/4+e/4+¢/8+Zi-1 o || B(t)— B, (t)
+1le/(8 Ipll)ll <5¢/8+Xi-,a; | B—B, | +&/8<3e/4+ Zi-, «; ¢/(4a max; a,)
<3e/4+X]_, ¢/(4a)=3e/4+eq/(4a) < 3e/4 +e/d=¢.

The theorem is proved.

5.3. Definition. Let aef. We say that the extremal point xeQ, is of first kind,
respectively second, if rank W,(x)=n resp. rank W, (x)<n.
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5.4. Theorem. Let o =(B, b, p)e ST NL and the solution xcextQ, be an extremal
point of the second kind. Then for every ¢>0 there exists 6,6STnL such that
xeextQ,z is a solution of o,x is an extremal point of the first kind, and
lo.—oll<elBI.

Proof. We define the function

1, te T, [x/e/2]

0, teT\T,(x/e) and 0<o,()<1, teT,(x/z)\T,[x/¢/2]

@.(t)=

and the point
o,=(B,b, p)eST, where b,=b+¢[{B,x)>—b].

With theorem 4.3. we obtain that there exists t,eT,(x) and o;=0,
i=1,...,q,q=<n such that p=X%{_, o; B(t,) (*).
It is clear that

T, (x) T, 0= Ta, (x)

By theorem 2.6. we have rank W, (T, (x/e))=n, therefore xeQ,_is an extremal
point of the first kind.

Furthermore, with theorem 4.3. and the condition (*) we conclude that x is a
solution of the problem.

1. Let teT,[x/e/2], then for some ye[x/e/2] holds <B(t),y) =b(t).
1, (&)= b (1) =19, (t) [<B(1). x> —b (O =I<B () x—y>I< I Bll | x—yl S¢ | BIl/2.

2. Let te T, (x/e)\T, [x/¢/2] then in the same way we get |b(t)—b,(t)|<¢ | B

But this means that |o6—o,||=|b—b,|| <e¢| B|. This completes the proof.

In the next theorem G. Nurnberger [4] gives a characterization of the
so-called “strong unicity” of the solution of the linear semi-infinite optimization
problems.

5.5. Theorem. For o=(B,b,p)eSNL the following two statements are
equivalent :

a) ceint LU

b) There exist {t;}i-, < T,(x) and 2,20, i=1,...,n,so that p=Z%]_, &; B(t;) and
for every such points the vectors p=B(t,), B(t,)...B(ti—1), B(ti+1).-...B(t,) are
linearly independent.

The main result in this paper states

5.6. Theorem. The set LU contains an open and dense subset of L..

Proof. Let 0eSI'nL and the solution xeextQ, be an extremal point of
first kind.

Since ceL, by theorem 4.3, there exist {t,}/-, = T,(x), 2,>0, i=1,...,q,9=<n,
so that p=Z{_, o; B(t,).

Because of rank W, (x)=n, we can complement the system B(t,),..., B(t,) to
n linearly independent vectors B(t), i=1,...,n.



191

Semi-Infinite Optimization, Existence...

Now, we put

q & n
.= X o;B(t)+=———= X B(t) b,=b+c, where c,()=0,
pe= 2 aB)+5o— gy E B )

=2 | S A 0<c,(t)§§teT\{tl,...,t,,} and o,=(B,b,p,)

8 n
s—a = lIp=pll+Ib=b =l ll+=———1 Z B(t)l
| Ilp—p sn—q B2 B

e—a)IBl_ ,\ .

S 2 =9 1B

Obviously xeextQ, is a solution of ¢, and for every i=0, 1,...,n the vectors

p.=B(to), B(ty),---,B(ti=1), B(ti+1).---.B(t,) are linearly independent, i.e. with
theorem 5.5 the problem o,€int LU.

To complete the proof we use the density given in the theorems 5.2 and 5.4.

The theorem is proved.
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