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Quantifierfree Boolean Formulas and
Their Relation to Modal Logic S5

Zarko Mijajlovic

A modal propositional formula o¢ is assigned to each quantifierfree Boolean formula ¢ so that the
following holds : ¢ is true in all Boolean algebras if and only if g¢ is a theorem of modal calculus S5.

1. Introduction and notation

In this paper we consider quantifierfree Boolean formulas in connection with
modal propositional calculus S5. The Theorem 3.6. shows that if the Boolean
operations are naturally identified with propositional connectivies, then the
Boolean ordering < may be considered as the strict implication 3, and the
equality sign=as the strict equivalence=in S5. This result may add a new feature
to a semantical theory of modal logic. As a by-product a decision procedures for
quantifierfree Boolean formulas' and modal calculus S5 are obtained?2.

In a sense, this paper continues the work in [7a], where we used the method of
Kripke’s tableaux, and, thus it is not a surprise that a connection between
Boolean formulas and modal calculus exists.

Throughout we use the following terminology and notation. The logical signs
are denoted by A, v, 1, = <, and the modal possibility operator by M. The
language of Boolean algebras (sometimes we call them shortly BA)is L 5, = {+,°,
',=, 0, 1}, where the displayed signs are interpreted in BA’s in the obvious way.
x—y stands for x’+y, and xy for (x—y)*(y—x).

The language L3, is Lg,u{*, o}, where *, o0 are unary operation symbols.
Any standard (equational) axiomatization in L, of BA's is denoted also by BA.
The theory BA* is BA plus the following (definition) axioms for *, o ;

o*=0, x>0=>x*=1, x%°=x*.

Models of the theory BA* are of the form B*=(B, *, 0), where B is a BA, and
they are called Boolean algebras with operators or simply BA*-algebras.

! Of course, in the light of Tarski’s result that the first order theory of Boolean algebras is
decidable, it adds not much to the subject, but the proposed decision procedure is very efficient, and in
particular cases can be done in few steps. For the earlier results on the matter one may consult [3], [7a].

% There are many decision procedures for S5. The latest one is probably of M. Sato [8]. In fact,
wle6give here a new proof of a decision procedure for S5, which is due to Carnap essentially, see [2], p.
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The sum (supremum) and the product (infimum) of a set x are denoted .
respectively by X, x x, I, xx. Two-element Boolean algebra is denoted by 2, and
its domain by 2.

We assume any standard axiomatization of modal calculus S53.

2. 2, — logic

As we are dealing only with quantifierfree formulas, it is a natural question is
there an appropriate “logic” for them. We show that the quantifierfree fragment of
the predicate calculus is axiomatizable, and has its own model theory.

Let L be a first order language. By Term; the set of all terms over L is

denoted. By For,nZ, the set of quantifierfree formulas over L is denoted. Each
@eFor, NX, is called shortly Z,-formula. If a is a term (or Z,-formula) of L, w a
term of L, and z a variable, then «, (w) denotes the term (formula) obtained from «
by replacing all occurrences of z in a by w.

The Z,-logic over L is given by the following set of axioms and inference
rules :

Axioms: (1) Each instance of tautologies of proportional calculus.
2) x=x, X=y=>y=X, X=yAy=z=>X=2
(3) x=y=u_.(x)=u,(y), ueTerm,
x=y=¢_(x)->¢.(y), @eFor.nZ,.
Rules of inferences:

@, o=y @
v e (w)

@, YyeForynX,, weTermg

Models (in Z,-logic) for a language L are ordinary first order structures for L.
If A is a model of L, and peFor,NnXZ, then, by definition, ¢ holds in A(in
X,-logic) iff the universal closure of ¢ holds in UA. We write A= if ¢ folds in A.

The set of all sentences (formulas without variables) of L is denoted by Sent,.
Any set T For,nZ, is called £, theory in L. T+ ¢ means that ¢ is deducible
from T in Z,-logic. T is consistent if a contradiction is not deducible from T.
T= ¢ means that ¢ is true in all models of T.

As it is expected, the completeness theorem holds :

Theorem 2.1. (Completeness theorem for Z,-logic). If T is a Z,-theory in L

then T=eo iff T35 @, ¢eFor,NX,.

The proof of the theorem can be carried out through the following assertions.
Proofs of the most claims are straightforward, so they are omitted or just
indicated. Here, T denotes a Z,-theory in L, and geFor,NnZ,,.

Claim 1 (Deduction theorem). If yyeSent, then T, b, @ implies T|—-,:°|//=><p.

* E. g, besides axioms of propositional calculus, also Lo=¢ L(p=y)=(Lo=Ly),
M ¢=LM¢, and the rule of necessitation : if —¢ then |Le.
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Claim 2. If c¢ is a constant symbol which does not occur in T, and if
Tty, o, (c), then Tty ¢, (w) for any weTerm,.

Claim 3. Assume not T+ ¢ (xy,...,x,). If ¢,...,c, are new constant symbols
(i.e. Lnfcy,...,c,}=Q), then Tu{1¢(cy,...,c,)} is a consistent theory in
Lu{cl, vsCp}- . :

Claim 4. If T is a consistent set of sentences of L, then there is a complete,
. r . ’
consistent set of sentences T in L such that T<T .

Claim 5. Let C={c, ¢,,...} be a denumerable set of new constant symbols (i. e.
LNC=Q), T aconsistent Z,-theoryin L,and T(C)={o(w,,...,w,)l¢(x,...,x,)eT,
Wy,...,w, are closed terms in LUC}.

Then T(C) is a consistent theory of Z,-sentences.

Proof of claim 5. We prove the following : If gpeFor,nX, and if
TuT(C)t ¢, then T|—z ¢. For that, assume TUT(C)I o.

Thus, there are ¥, Wy, (2)--csWin(T)seees W Wy (T): -+ » Won (€))€ T (C)%,
where w;;(x)e Term,, so that
Tu{w,(wu(6),...,wl,,(é')),...,lll,,,(w,,,,(c‘,’),...,w,,,,,(e))}l—:o(p. By deduction
theorem, and claim 2 we have

Tt ¥, Wis B s Wi B sV Wt (X), oes W (R))=>00.

As ¥, (),...,¥,(X)eT, by the substitution rule,

T|_—zo|pl(w“ (@)W GPA AL, (Why (R), -, W, (%)), hence Ttz o

Now, assume T'(C)is inconsistent. Then T (C) 5, X1 %%, thus Tu T(C)]—z X,
#x,, and therefore T bz, X1 #Xy, 2 contradiction.

Claim 6. Let T be as in claim 5 and S a complete set of Z,-sentences in
L U C so that T(C)< S. Further, let W be the canonical model of S®. Then U is a
model of T.

Now, the proof of the theorem is as follows (the nontrivial part). Assume
TE=e@(x,...,x,), and suppose not Ttg, (p(xl, .,X,). By Claim 3. for new
constant symbols c,,...,¢, Tu{1¢(c,,...,c,)} is a consistent theory. Therefore,
there is a model (A, a,...,a,) of Tu{1¢(cy,...,c,)}, so U=T and
A=1¢(a,,...,a,), a contradiction.

As an immediate consequence we have that Z,-logic is a real fragment of
predicate calculus, i.e. that predicate calculus is a conservative extension of
Z,-logic. Thus, we shall write T ¢ instead of Tr—,:o ¢. Specifically we have

4 ¢, %, etc. stand for cy,...,c, and x,,...,Xx,, respectively.

* Domain A of % is {w/~|w is a closed term in L UC}, where for closed terms u, v in LUC u~v
iff St u=v. For n-ary function symbol fand w,/~,...,w,/~ €A, fUwy/~,...,w/~) =f(Wy,...,W,)/
~, and similarly for relation symbols.
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Corollary 2.2. For any X,-Boolean formula ¢ BA= ¢ iff BA— o.
The following assertion will be of an interest.

Theorem 2.3. Let .# be a class of models of a language L which contains only
Junction and constant symbols®, and assume that .# contains free model N with an
infinite set of free generators py, py... .

Then:

1° If u, veTerm; and We=u(p,,...,p,)=v(Py,-..,p,) then M =U=v.

2° If @, are Z,-formulas over L which are built only from atomic formulas and logic
connectivies A, v, then M =q@vt implies M= @ or M E=.

Proof. 1° Let BeM be any model, b,,...,b,eB and h:A->VB a
homomorphism so that h(p,)=bg,....,h(p,) =b,. Then B=u(b,,...,b,)
=v(bg,...,b,). As bg,...,b,eB were arbitrary, it follows B=u=v, hence
M=u=v.

2° There are formulas ¢@,,...,¢,, ¥,...,¥,, so that ¢ is @, v...ve, and y is
Y,v...v{,, where ¢, y; are conjunctions of atomic formulas. As # =@ v ¥ it
follows .# = ¢ v ¥, so for some i # = @;(py,---,p,) or W=y, (py,...,p,), and
according to the.previous part 4 =@, or M =y, hence M =q¢ or M=.

Corollary 2.4. Let .# be an equational class of models (e.g. BA) of an algebraic
language L, and A, Ay, B,,...,B,eTerm,. Then MEA,
=B,v...vA,=B, iff there is i =n so that ./ =A;=B,.

3. X,-Boolean formulas interpreted as modal formulas

We define three mappings of syntactical character, and investigate their
properties. We assume that the set P of variables of X,-logic is equal to the set of
propositional letters and consists of pg, py,...

Definition 3.1. The map o from the set of X,-formulas of L3, into the set
Sent”gs is defined as follows. First, we define ou, ue Term,_BA by induction on
complexity of u :

If u is a variable, then ou is u. Also, 00 is “false” and ol is “true

If u is v/, then ou is 1 ov.

If u is v-w, then ou is (ov)A(ow).

If u is v*, then ou is Mov.

Now, we define o, @eFor * NnZ,, by induction on complexity of ¢.

If ¢ is an atomic formula u=v(or u <v), u, v < Term, _, then ¢ is ou 3gv
(i.e. ou3ov). o

If ¢ is YyAO, then g¢ is oy AcO.

If ¢ is 1y, then o¢ is ay.

The map 7 is defined in [7a]. For convenience we repeat the definition of 7.

”7*

® We call such language an algebraic language.
7 the set of all sentences of S5.
“true” is any theorem in S5, and “false” any contradiction in SS5.



196 Zarko Mijajlovic

Definition 3.2. If u is a term of Ly, then tu is u.
If u,v are terms of Ly, then t(u=v) is (ue—0v)° and t(u=v) is
(u—s0)°.
Ifo, BeFor,» NZ,, then t(1a)is (o) and t(axAp)is () 7(B).
BA
The following is proved in [7a].

Proposition 3.3. For any Z,-formula o of Ly, the following hold:

1° BA*E= ta=0vta=1

2° BA* = aer(ta=1).

Corollary 3.4. For any geFor » nZ,BA*= ¢ iff BA*= 1p=1.
BA

The map 4 assigns to each modal propositional formula ¢ a term A¢ of Ly,
in the natural way® .
Obviously, the followmg holds:

Proposition 3.5. t=4-0

o
ForL ——= Sentgs

\/

Term* Ee

Now, we prove the main theorem.

Theorem 3.6. 1° Let ¢ be any Ty-formula of Ly, Then BA* =@ iff \-sso¢
2° Let ¢ be any T,-formula of Lp,. Then BAFE= ¢ iff -s50¢.

Proof. In the proof we use the following well-known fact:

(1) If l//esentss, then }—sslll iff BA'FAJ#:]..
Now we prove 1°. Let peFor,» nXZ, Then
BA

by Corollary 3.4. BA*=¢ iff BA*=1p=1,

using t=4°0c BA*=¢ iff BA*=licp=1

by (1) BA*=¢ iff ss00.

For 2° observe that BA* is a conservative extension of BA.

By completeness theorem for Z,-logic (Theorem 2.1.) it follows that for all

Z,-Boolean formulas ¢ BA Fx @ iff 55 00.
If we observe that o¢ is 2 modal propositional formula in which every

propositional letter occurs under the scope of exactly one modal operator, we may

8 All occurrences of signs 1, A, v, L, M in ¢ are replaced respectively by ', -, +, 0, =*.
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consider the theory BA in X, -logic as a modal propositional calculus of
first-degree modal formulas®.

The same result can be obtained by use of Kripke’s tableaux, and somewhat
finer analysis may be carried out. We are going to indicate this method, too. Let
B be a finite BA and A4 the set of all atoms of B. A4 will be called the set of
conditions. '

Further, let S:A4—{x|x<P}.

Definition 3.7. The forcing relation'® |~ is given for the set Sentss as follows :
If peP then a|—gp iff peS, (acA)

al-seAy iff al-s¢ and al—gy.

al-s1¢ iff notal—ge.

alt-sM ¢ iff there is beA such that b|ge.

The following statements are obvious.

Proposition 3.8. 1° al-3 Lo iff for all beA bi-s¢
2°al-s@ 3 Y iff for all beA b|—g5p=y
3°al-se=y iff for all be A bi-sp—y.
Definition 3.9. 1° A|-5¢ iff for all aeA al-s¢
2° Ao iff for all S:A—{x|xeP} Al-s¢
3° |~ iff for all finite B A|—¢.
The following is a characterization theorem for modal S5 Calculus.

Theorem 3.10. (S. Kripke) Let peSentss. Then \—g5 iff = @. Now, if S is
given, define a Boolean assignment veB® by

v(p)=={acA|a—p}'".

If teTerm,* | then v(t) denotes the value of ¢ for the assignment v, and for

WeSentg, define |y || =v(Ap).
The following can be verified in the standard way'2.

Theorem 3.11. 1° If YyeSentgs, then |y || =X {acAl|a|—sy|}.
2° If yeSentgs then al—sy iff a= ||y
If, in the following, ¢ denotes a T,-formula of Ly, then
3° a|—gso0 iff asv(te)
4° All—soo iff B= o[v]
5° Al—oe iff B o
6° I— ¢ iff BA*= o.
We are not going to prove all the statements. Most of them can be easily
deduced by translating proofs of lemmas 4.1 —4.4 in [7a]. The equivalence 4°

° ¢ f[2], p.p. 50-51.
'% It should be written ||-—(B 4.5 but we use the shorter form if the ambiguity may not arise.

"¢ f. E.J Lemmon [5]
'? By induction on complexity of ¥, c.f. also [7a].
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should have a special attention as it connects the ordinary satisfaction relation
with relation |—4 and we prove it.

Proof of 4°. We have A|—go¢ iff for all aeA v(t@)=a

as B is atomic and iff v(tp)=Z. 4a.

A is a set of atoms of iff v(r@)=1

by the Proposition 3.3.2° iff B= ¢[v].

If it is «ssumed that ¢ is a Boolean X -formula, all the relations 3°-6° hold,
provided that B is a Boolean algebra, and if- BA™ is replaced by BA.

Also, we observe that relation 3° and 4° show that the truth of ¢ in B for the
assignment v may be “partitioned” thus, the previous propositions may provide a
new meaning of the truth of X,-Boolean formulas.

4. First-degree modal formulas

As we have shown, the map o assigns to each £,-Boolean formula ¢ a modal
transform o¢ in a natural way, hence it may be asked what can be done in other
direction. For that, we define a map ¢’ : SentssﬂForLBAnEO so that gsy iff
BA - o' . We use a well-known result that each modal propositional formula ¢
has so-called modal conjunctive normal form (MCNF) y in S5.

Theorem 4.1. For each yeSentss there is o'yeFor, NZ, so that g5y iff
BA o'y -

Proof. Let @ be MCNF of . Then |gs«>¢, and ¢ is of the form
@,A...Ap,. Each ¢, is a disjunction of formulas of the following types : (1)6, (2)
Lo,A..:ALa,, (3) MB, where 0, a,,...,a, B are propositional formulas.

If ¢, is OvLa,v...vLa,vMpB'* let ¢, be LOvLav...vLa,vM§p.

Then (g5 @, iff g5 @}, what follows from the necessity rule and reduction
theorem in S5 of modal formulas to first-degree modal formulas. Define ¢’ ¢; to be
d0=1vd a,=1v...vo'a,=1vs f>0, where for propositional formula y ¢’y
is a Boolean term obtained from y by replacing all occurrences of A, v, 1, = by -,
+,’, — respectively. Finally, define ¢’y to be o’p,A...Ad’p,. Then, by Theorem
3.6. we have

BA o'y iff 500’y

iff —gs0@A...AT',
iff for all ¢, of the form 0 vLa,v...vLo,vM§p

s 0=true va, =truev...va,=truev 1(f=false)
ie, FgsLOVLoyv...vLa,vMp
iff 55y
We illustrate this theorem by examples given in [2].

Example 4.2.(c.f.[2]p. 117) ¥ is (MpvLIpvLp)A (M 1pvL pvLp)
oy is (p>0vp'=1vp=1A(p'>0vp'=1vp=1).

14 The similar consideration is for other combinations of formulas (1), (2), (3).
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Obviously BA = o'y, hence g4 Y.
Example 4.3. (c.f. [2] p. 118) ¢ is

(LgvM A pvL A (pAr)v(pAgq=r))NA(Mpv L1 p). Then o'y is
(g=1vp'>0vGpr)=1v(pg—r)=1)A(p>0vp' =1).

a’'y is not true in four-element Boolean algebra, thus not (g5
As an illustration, we shall transfer already mentioned Csarnap’s decision

procedure for S5'* to a decision procedure for validity of Z,-Boolean formulas.
Let ¢ be a £ -Boolean formula. By conjunctive normal form (CNF) theorem

for propositional Calculus, can be found effectively formulas ¢,, ¢,,..., @, so that

BAE @ @,A...Ap, and each ¢, is a disjunction of atomic and negations of

atomic formulas.

Using the following reduction rules :

BA\- (A=B)—(AFB)=1, BAR 1(A=1)-A'>0,
BAR (A>0vB>0)—(4+B>0), A,BeTerm, .
it may be assumed that each ¢, is of the form
4.4. A;=1v...vA,=1vB>0, Al,...,A,,BeTerm,_“.
Then, BA ¢ iff for each i=n BA ¢,;. If ¢, is of the form 4.4., we have :

BA ¢, iff Fs509;
iff -ssLoA,v...vLocA,v McB

(by Carnap’s decision procedure)

iff there is i<n so that -g504;vaB.
Therefore,
4.5. BARF- A;=1v...vA,=1vB>0 iff

for some i<n BA A;+B=1.

However, 4.5. can be obtained directly, thus, by means of Theorem 3.6. we
have an another proof of Carnap’s decision procedure for S5. So we prove 4.5. As
the part («) is trivial, we prove only (—) direction.

Proof of 4.5. Assume BA—A4,=1v...vA4A,=1vB>0. Let Q be a countable
free Boolean algebra with {p,, p,...} as a set of free generators. Then

QkE A, (py,---»P)=1v...vA,(py,...,p,)=1VB(py,...,p,) >0,

so for some i=nQ= A;(py,...,P,)=1VB(py,...,p,)>0. First assume Q= A;(p,,
...;py)=li.e. by Theorem 23. BA}= A;=1, hence BAr A,+B=1. Assume
Q= B(pys---,p,)>0. Then by disjunctive normal form theorem there is a

15 ¢ f.[2] p. 116
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nonempty set T<2" so that B(p,,...,P,)=ZeerPl... pa"'%. Let fe2"—1. Then
2= B(B,,...,B,)=0,s50 as 2=4,=1vB>0, it follows 2|=A (Bys-- ,ﬂ,,)=l, hence
Q= A(ps;-- ,p,,)gpﬂl .pi~. Thus QFE A,(p,,.. ,p,,)ZZ,,Ez.._,p"n #, hence

QE A,(pys--->P)+B@y,....p)= Z  PPr,....pin+ Z pir,.... D0,
ae I

pe 2" -1

i.e. Q =A;(py,....P)+b(py,...,p,)=1. By Theorem 2.3. BA|= A;+B=1 and by

Theorem 2.1. BA+— A;+B=1.
As consequences of 4.5. we have

Corollary 4.6. Let A,BeTerm, . Then

1° BA— B>0 iff BA- B=1 -

2° BA+— A=1vB>0 iff BA— A+B=1

3° BA— A=1vB=1 iff BA A=1 or BA{1B=1.
(compare to Theorem 2.3.2°).

All these statements have appropriate versions in SS5.

Corollary 4.7. Let ¢, Y be propositional formulas. Then

1° Fss Mo iff Fsso

2° ssLovMy iff -ssovy

3° ssLoVvLy iff ss¢ or Fss¥t'’.

It is easily obtained as a consequence of 4.5. also the following :

Corollary 4.8. Let Al,...,An,BeTermLBA. Then

BAR A,=IA...AA,=1=>B=1 iff

BAr (T 4)~B)=1 if

26 (11 A)=B)=1.

In fact, one can prove much more easily, using that Skolem functions in finite
BA’s are definable in the theory BA(i.¢. they are Boolean functions):

Theorem 4.9.'® If ¢ is a Horn formula of Ly, and ¢ the Boolean term
obtained from ¢ by replacing all occurrences of =, <, A, = in @ by <, =, +, —
respectively, and all subformulas V xif, 3 x0 of (p by 'P ©)- ¥ L), 8 (0)+U,(l)
respectively, then

16 g=(ay,...,a,), p'=p, p°=p'
17 3° holds in S4 for arbitrary modal formulas ¢, ¥, as it was shown by I. C. Mc. Kinsy and
A. Tarski [6]. But 3° does not hold in S5 for arbitrary modal ¢, ¥, e.g. ¢ =p, ¥ =M Tip c.f. [6], [4a].

1% A version of Vaught’s theorem, c.f. [1], p. 368.
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BAE ¢ iff BAEg@=1
iff 2 =1
iff 2E=¢

Applications of Vaught theorem can be found in [7b].
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