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1. Statement of the problem

The present work deals with the problem of optimal filtering of
one-dimensional Wiener process which is observed at moments of first reaching of
lines. The lines are arbitrary chosen, but so that the moments of first reaching
form an increasing sequence. The observation are presented in the form of a
counting process and the theorem of filtering (a representation theorem) and the
theorem of the predictable expectation due to D. Hadzhiev ([1]) are used. An
explicit formula for the optimal filter is obtained and the needed distributions are
calculated. The special cases when the linear Wiener process is observed at
moments of first reaching of : a set of horisontal lines ; a bundle of lines and a set
of parallel inclined lines are considered. In'these cases the received formulae have
more simple form.

Let (Q, #, P) be a complete probability space with a filtration # =(&# ),
F,=F,, teR,=[0, o), i.e. F satisfies the conditions :

a) F,=F, s<t (nondecreasing) ;

b) #,=nF,.,u (right-continuity) ;

c) F, is completed by P-null sets from & .

Let W=(W, &), teR,, be a standart linear Wiener process which is
Z-adapted in the probability space (Q, & ., P).

Let K (Oty) be a Cartesian coordinate system and [,, n=1, be a set of lines in
K :l,:y=a,—b,t. Denote by :

T,=inf(teR, :W,=a,—b,t), n>0, T,=0,

the moment of first reaching of line I, by the process W. We choose the stopping
times T, in such a way, so they form a sequence which is strong increasing to
T, = co. This requirement implies some restrictions of the coefficients a, and b, of
the lines [, We suppose, that {a,}, n=1, is nondecreasing sequence with positive

members (a,>0), and {b,}, n=1, is nonincreasing sequence with non-negative
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members (b,=0). Under these assumptions we construct a counting process
N=(N,#,), t=0, in the following way :

N,=Z,.0lr < where I, is an indicator of set {*}.

Set S,41=Ta+1—T,, n=0. Designate by F,(t)=P(S,+=t) the distribution
functions of the random variables S, ..

The nondecreasing family FN=(# :v), teR,, of (completed by P-null sets
from & ) o-algebras & V=0 {N,, s<t} is generated by the counting process N.
This family is right-continuous, i.e. it is a filtration too ([4], ch. IL, § 2), and will be
interpreted as a flow of observations.

From observations &# " over the counting process N up to time teR, we
shall estimate a nonobservable process W. An unique cadlag modifications
n(W)=(n (W), F :v), teR,, of the optimal estimate E (W,/# f'), teR,, exists. The
process n(W) is said to be an optimal filter of nonobservable process W (see [1]).

Our purpose in the present note is to derive an explit formula for the optimal
filter on the set [0, TJ.

2. Results

We establish two theorems.

Theorem 1: Under considerations and notations in § 1 the following
representation of the optimal filter =, (W) :

(1) w(W)=2 (1=F,(—T,)" (4,—b, Ty—ans1 F,(t=T))

n>0

t
+b,i1 _‘. San(S_Tn))- I{T"§r<1‘n+l}'
T,

where a,=0, b,=0, holds on the set [0, T[.

Theorem 2. The distribution functions of the random variables S, ., n=0, are
determined by formulae:

F ()= a;,“\/ﬂ [ exp(—(bns+15 > —an+1)’s*/2)ds, t>0;
1/,
2 '
0, t=0,

where a,.,=dp+1—a,—(bus1—b,)T,; ae=0, by=0.

3. Proofs of the theorem

Proof of the theorem 1: The Wiener process is a continuous
martingale which “drift” is zero and W,=0. Applying the theorem of filtering (11,
§ 3), we derive the form of the optimal filter n(W) on the set [0, T :
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(3) n,(W)=(6(‘](<W/N>,—1t,_ (W))d(Ns—_’qs)'

Here {(W/N) is the predictable expectation of W w.r.t. the counting process
N, n,_ (W)=lim, m, (W) for s>0and A=(4 ,), s=0, is the minimal compensator
of N, i.e. A is the dual FV-predictable projection of the process N ([1], [2]).

The random variable S,+,=T,+,— T, does not depend on the o-algebra
F1 =0 {N,, s<T,} because the Wiener process is a process with independent
increments. Therefore :

P(Sus 1 St/F1)=P(Sns1=1).

According to [2], ch. V, T57 we know that

A,= = In(1—F,((t—T,)\Sns1))"".

n>0
From the theorem of the predictable expectation ([1], § 4) it holds on the set
[0, T[:

<W/N>:= §09n+1(T1’ TZ’“"Tm t)'l{T"<t§T"+l}’

where g,=g,(t;, ts-..,t,), n=1, are Borel’s functions with the property
9u(Troe . TY=E(Wy . 1ip _o0)/F71).
On the set T, Tp+1 [, n=0, we rece.ive
Gn+1=0n+1—bps1t;
(WIN>i=ap+1—bpist;
n,_=m, since m, is continuous on the set ]T,, Tnsi[ (1, § 1);
(t=T)\Sp+1=t—T,
Therefore, on the set |T,, T,+; [ the equation (3) takes the form
(@) dn(W)=((@ns 1 —bpes ) (W)d(=In (1= F, (= T,)) ")
Considering t as a function with an argument In(1—F,(¢t—T,)) " from (4) we

derive a linear differential equation which together with the initial condition
nr=a,—b, T, leads to a Cauchy problem :
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dnr=(7tz_an+l +bniy t)d(ln(l —F"(t_ T"»—l)’
np=a,—b, T, (ntp=W;r=0)

on the interval [T,, T,44), n21.
The decision of this Cauchy problem is

ty=(1—=F,(t—=T,))" (ay—by To—ans Fy(t—T.)+bnss § sdFy(s—T5)

for te[T,, To+,) and all we{weQ : 3 teR, with (w,t)e[T,, To+. [}
Finally, on the set [0,T [, i.e. for teR,, we derive

7 (W)= £ (1=F,(t—T,)" " (a,—b, Ta—a, , s Fa(t—Tas1)

n + 1 n
n>0
t
+b"+] I SdF"(S-—T"». 1(T"§'<T"+l),
Tn

where a,=b, since ny(W)=W,=0.

Proof of the theorem 2: It is well known that the distribution
functions of the stopping times T, have the form (c. f. [3]):

t
P(T,<1)= a,,\/l/Zn(_Es"”zexp(—(b,,s—a,,)z/(Zs))ds, t>0, n21; T,=0.
0, t=0.
(5) Fo(t)=P(S,=<t)=P(T,<t) for n=0.

To find the form of F,(tf)=P(S,=<t), we make a change of the coordinate
system K (Oty) in K, (O0't'y"') with the formulas :

1
t'=t—T,

K
! '=y—(a,—b,T),).

Using the strong Markov property of the Wiener process we note that in K,
the stopping time T5=T,— T, will be a moment of first reaching of line /, by a
one-dimensional Wiener process with an initial point 0'. Hence :

F,()=P(T2<t)=a,./1/2n } s™3/2 exp (— (b s —a3)?/(25))ds,
o

where a3 u b, are the coefficients in equention of line I, B K, i.e.



206 Mariana Beleva
I, :y'=a5—b5t" in K,
a’2=(a2——a1)—(b2—bl)T1

4 =b,. We have a>=0 because a,=a,, b,<b, and b520.
Analogously, after sequential changes of coordinate systems we obtain in
Kn (Ontnyn)

K| t"=¢t""1—T"
y’l:y"—l_(an_bnTn)‘

T, ., is a moment of first reaching of line /,,, by a one-dimensional Wiener
process with an initial point 0". Therefore, for all n=0 we get

6) F.()=P( ;,H§t)=a:,“\/I/E:_[s*’zexp(—(b,,ﬂs—a:,+1)2/(23))ds,

where a, ., =(ay+1—a,)—(bs+1—b,)T,. Obviously a;,,,=0.
Remark that F,(t)=0 for t<0 because P(T,+,—T,<0)=0 for (@n+15bn+1)

#(a,, b,).
Finally, making the substitution &=s""/2 in (5) u (6) we derive the desired
form (2).

4. Special cases

Case 1: Let us have a set of horizontal lines, i.e. a,=n, b,=0, n=1. Then
T,=inf{teR, : W,=n} is the moment of first reaching of the integer level n.
Applying Theorem 1 and Theorem 2, we get

n (W)= 2 (1=F,(t=T) " (n—(n+ 1) Fo(t=T,))- Limugicra, 5

n>0

\/g aj? exp(—y?/2)dy, t>0

Fn(t)= 7[1(/1

0, t=0,

for n=0, because a,,,=1. This result coincides with the result in [1], § 5.

Case 2: Let {l,}, n=1, be a bundle of lines which pass through a point
(0, a), i.e.

l,:y=a—b,t, a>0, b,=0

and let {b,}, n=1, be a decreasing sequence.
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It follows from Theorem 1 and Theorem 2 that

t
7[,(W)= Zo(a+(1 —Fn(t—T”))_l (bn+1 1]; San(S—Tn)—b"Tn)) 1{T..§I<T,.*1)a
nx n

a;.+1=(b,.—bn+ 1) T,

and for n=0:

(Bu—bus 1) ToJ2/7 [ exXp(—(bus s 52— (by—bus 1) T,)? 52/2)ds,t>0;
F”(t)= 1(/,

0, t<0.

Case 3: Let {I,}, n=1 be a set of parallel inclined lines, which satisfy the
conditions
l,:y=a,—bt, b>0, a,=20, and {a,}, n=1, be an increasing sequence.

It follows from Theorem 1 and Theorem 2 that

m (W)= 2 (1-F,(t—T,)" " (a,—an+ 1 F, (.= T,)

n>0

t
+b j SdF"(S—T")—an). 1{T,.§1<Tn+,}'

Tn

Since a,+;=a,+,;, we get for n=0

(@n+1—a,) 2/ ]? exp(—(bs™ 2 —(an+1—a,))?s*/2)ds,t>0
()= &
0, t=0.
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