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While using some algorithms, in particular of the interpolating type; for the aims
of calculating the derivatives of functions given by tables of its values containing
some error, there often appears an unstability, i.e. the diminution of the steps of
the mesh leads to the worse approximation of derivatives. In the present paper it
is shown, that the derivatives of polinomial splines of odd degree, defect one, in
the convex sets give stable approximation of the corresponding derivatives of the
given function. The estimates of such approximation of the derivatives are
obtained. N

The extremal problem, leading to the splines of odd degree, defect one, was
primarily suggested by M. Attia [2]. Both he and P. -J. Laurent [5]
investigated the questions of existence, uniqueness and characterization of the
solution of such problem. The stability of the first two derivatives approximation
of the table function by the derivatives of cubic spline in the convex set was shown
by V. A. Morozov [7]. The approximative properties of splines in the convex
sets of small degree and some other aspects of the problem were examined by the
authors in [8-9], [12-15].

In the first section of the paper we remind the extremal problem leading to
the splines of degree 2k—1 ﬁc: 1). The error bounds of the k-th derivative
approximation of the function f(x) by spline in the convex set in the norm of space

L, [a, b] are obtained in the section 2. The third section contains the estimates of
S%~1 approximation in norm of C|[a,b].

1. Let A:a=x,<...<xy=b be a mesh on the interval [aq,b] and
.z, §=20(i=1,...,N) are the real numbers. We consider the sets of func-
tions : G={p(x)eWk[a,b]: z;—¢;<p(x)<z,+¢, i=1,...,N}, G=GnW%][a,b],
G=GnW %[a,b), where W%[a,b] and W %[a,b] are the subsets of the Sobolev
space W% [a,b] such that : @ (a)=24, ¢@(b)=z3, g=1,...,k—1, if peW %[a,b],
where z? and z; are real numbers, and ¢ is a b— a-periodic function if e W % [a, b).
It is evident that the séts G and G are convex and closed.

The problem of minimizing the functional

(1) J(lp)=§b|¢""(X)lzdx= o™ 113



On the Stable Approximation of Derivatives... 223

(we denote || * ||, a5y bY Il * Il) On the sets G and G has the solutions in both cases.
These solutions ‘are the polinomial splines of degree 2k—1 of defect 1, i.e. the
functions S and § on the interval [a, b], such that:

1) their restriction on each small interval [x; x;+4] is polinomial of degree
2k—1;

2) S, SeC?**~Va,b];

3) 3@ (a)=24, 39 (b)=z; q=1,....k—1,

§® (a)=8® (b), p=0,...,2(k—1).

Let D;=S®~1(x;+0)—S?*—"(x,—0) be the values of the gaps of spline
2k—1-th derivative in  the points x, We also put D,=S%"Y(x,),
Dy=—S?~Y(x,) for the splines from G and D,=Dy=5%""(x,+0)
— 8§k~ (x, —0) for the splines from G. The spline S delivers the minimum to the
functional (1) if and only if the following conditions, called the characterization
conditions, are fulfilled :

(—1)D;=0, if S(x;)=z;+¢;

D;=0, if z;—g;<S(x)<z;+¢&,

(—1)*D, 20, if S(x)=2z—¢;

2. Let z; be the values of some function fe W 3*[a, b] in the knots of A given
with some error, such that |z;—f(x;)|<¢,. A question may arise concerning the
approximative properties of splines in the convex set generated by z;, &;. We give
the error bounds for the approximation of the k-th derivative by the k-th
derivative of such spline in the norm of space L, [a, b].

Let S be a spline of degree 2k — 1 in the convex set G and let f(x) be such that
f@(a)=z3, f@(b)=z3, g=1,...,k—1. Due to the fact that || S®IZ<|f® 3, the
square of the L, norm of f®—S® can be estimated as follows :

b
) [£©—S® 3= SPUF— 1S9 NF+2[,% (f©—5¥)dx

b
<2[f®(f® —S®)dx.

Using the integration by parts with respect to the fact that f@ (a)=S“(a),
f@(b)=S?(b), g=1,...,k—1, we obtain the equality

(3) ;'f""(f""—s"")dx=(— 1) [—f*=D(f-S) |Z+bf‘2"’(f—S)dx].

Suppose that the estimate |f—S|,=<E is known and g&*=max {e1,€n}s

R=max {|f®*~(a)l, |/*~(b)I}.
Using the Holder inequality, we obtain from (2) and (3)
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(4 If®—8® |, <./2(2e*R+E| f3||,)V/2.

Now let f be a periodic function. Consider the spline in the convex set G.
Repeating the speculations of the case G, we get the estimate analogous with (4)

5) ILf®—S® |, < J2(E |1 £21|,)"2.

If feW2*[a, b), one can write ||fZ¥|,<(b—a)lf®]|, and get the following
estimates :

(6) If®—8® |, </2[2e*R+ E(b—a) [| /2P| ,]'%,
if feG, and

(7) 1@ —S5%® |, </2[E(b—a) | f2* 1 .12,
if feG.

The estimates for the value || f— S|, may be obtained, for example, as follows
(further we consider the periodic case and uniform mesh). We have the inequality

®) =Sl Uf=S8 o+ 11 Slx

where S is the spline of degree 2k — 1 in the convex set G and § is the spline of the
same degree interpolating function f. If fe W2 [a, b] we have the following exact
estimate for the first summand in (8) [4, p. 195]

) If =Sl o < (Kau/m2*)h2* || f2P|

where K, =(4/n)Z{Zo(— 1)""'“’/(21+1)"‘“ are the Favard constants, K, <m/2,
Ko=1, K,=n?%/8, K,=5n*/384.

Let us estimate the second summand in (8). By L?*~! we denote the spline
interpolating operator of degree 2k — 1 from the space of the continious periodic
functions C [a, b] onto the space of periodic splines S?*~! [a, b], which is the finite
dimensional subspace of C[a, b]. We have the inequality

(10) I §—S llo <26l L1,

where £¢=max; ¢, The value of the norm of the operator L>*~! may be estimated
by the formula [6]

N-1

(11) | L*7'I=(2/N) jE:O Ha—y (172, T +L))Ha—1 (1, L))
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where {=exp(2ni/N), H,(t,z) are the modified Euler-Frobenius polinomials,
defined for =0 and |z|<1 by the formula

H,(t2)=(1—2F*' = (t+j)2.
j=0

Note that for N=2n+ 1, we have the equality in (11). In particular the following
result for the cubic splines is given in [6]:

1—@-3"

1 —
3 =—-1 S ———
L7l =4l +3‘/31+(2—3)"'

Finally from (8-10) we get
IS =S ll o S (K2u/m?)h?* || f@R ||, +2¢|| L2~ || =E.

These are some examples for a small k :
1) k=1, we have the spline of the first degree

(12) If=Slle<2e+(hr*/8)If " llo s

2) k=2, we obtain the cubic spline

(13) 1f =S llo SU1+3/3)/2le+(5/384)h* SV | .
Note 1. The estimate (12) is true for the splines from G as well from G and
also for irregular mesh with h=max;h,.

Note 2. The estimate (13) is not true for the irregular mesh. Moreover, the
value of the norm of the operator L2*~!, k>2, essentially depends on the
structure of the mesh A not only on its maximal step h. In particular, there exists
the sequence of meshes Ay, such that hy tends to zero, but L2*~! tends to infinity
if N tends to infinity [16] (for cubic splines see also [17]).

The following estimates:

If= Sl <2e+h2 1S |0 +(/3/8)W2h~ 2| 7

for G and

1f=SllwS2e+h 1" Il +(V6/8YH2R™ Y2 | f" 1l

for G and irregular mesh with h=min, h;, are obtained in [15] and may be taken
instead of (13) in case of cubic splines.

3. Finally here we obtain the error bounds for the k—1-th derivative
approximation in the norm of space L [a, b]. For this purpose we use the
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inequality for the norms of intermediate derivatives of functions from W¥[a, b].
With the technique of [3] it is easy to prove the inequality

(14) 1%V, S Ay R g+ Byt g,

true for 1 <k < + oo, 1 <p, r< + oo, where parameter y is such that 0<y<b—a.
The exact constant A has the form ’

A=(k—1)Yl Qx-, ”LPIO,l]’

here Q,_,(x) is the polinomial of the minimal norm in the space L,[0, 1]. The
constant B is such that 0 < B=< 1. Minimizing (14) by y, we obtain the estimate that
has two cases :

1) the inequality (14) takes place with y=b—a, if

lo®I,/Il@ll,<Aru(b—a)~*"?/[Bp(r—1)),

where u=kp—p—1, v=krp—p—r;
2) in the opposite case we get the inequality

l@* =Vl o  {lru/p(r— 1)1~ + [ru/p(r — 1)]7¢ = DI}
(15) x(A @l )P~V (Bl o™ |, )"
We are interested in the case, when p=o0, r=2. Suppose, that ¢=f—S and
If—SI.=<E, |f®—S®|,<E,, where E, is given by right hand parts of (4-7),
then we get the estimate from (14)

(16) I f*-D—S*-1| < Ay~**1E4 Byl2E,.

Minimizing the right hand part of (16) by 7 and computing the constant A4,
we obtain

(17) Jfe -8y <27 3(k—1)'E/(b—a)" '+ B(b—a)'?E,,
if E,/JE<2**72(k—1)!(k—1)(b—a)~?*~172/B, in the opposite case we have
(18) /%" =S*= V), (2k—1){(k—1)! E[BE,/(k— 1)]22~ V/2} 13-,
The inequality (17, 18) is true for any k= 1 for both types of convex sets : G and G.
We shall consider more carefully the case k=2, corresponding to the cubic

splines. In [14] the way is shown how the inequalities between the norms of
derivatives are obtained. One begins with an equality
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(19) o ()= —§ (&)l )qu» OA(x, e,

where @(¢) is a function on [a, b] with absolutely continuous derivative & '(¢) and
such that

@ (@)= (b)=0,§a”)(é)dé= 1,

and A(x,¢&) is defined by the formula

§ a(n) dn, aEELx,
K (x, é): @ b (
—fd(m)dn,  x=E<b.
g
Using Hdlder inequality and Minkowski’s generalized integral inequality we
obtain from (19)

l¢'llo = A(®) l@ll,+B(@) l¢"ll,,

where A (@)= & |, o la.b] p'=p/p—1), r=r/r—1), B@)={ll I1A(X, &)l ¢l o
I IIA(x E oo I} "We have A@)=(b—a) """ |wll, 0.1y Where (¢)
=@ [a+(b— a) &] and is defined on [0,1]. It is proved in [3] that A (@) will be
minimal if [[w |, o, 1]— /10,1, JlabD where Q, (x) is the polinomial of minimal
norm in the space L,[0, 1], Q, (x) x—1/2. We compute

w(é)_{(PH)[l—(l—25)"]/17, 0=¢<1/2,
S+ —QE—1pYp,  1/25ES1.

and then the function A (x, £). After that we determine the limit of B(w, p) when p
tends to infinity and obtain inequality ||¢'[l, <2 [l@ll,+7"*(/3/3)l¢" |,

Substituting the value B= \/3/3 into (15), we get an exact inequality [1].
Hence B is an exact constant.

The main characteristic feature of the obtained estimates (4)-(7) and (17, 18) is
the following : their right hand parts tend to zero, no matter how h and ¢ are
tending to zero. This shows the stability of the approximation of the derivatives of
any order with the help of splines in the convex sets.

Let k=2, then we can see from (18) that the order of ¢ is equal to 2/3, that
coincides with the order of ¢ in the optimal estimate in [10, p. 198]. Note, however,
that there no table functions were considered but functions defined on (— oo, + o0)
such that feKW?3, i.e. belonging to the class of functions with the second
derivative satisfying to Lipschitz condition with constant K. In our case we
suppose that fe Wt[a,b], or feW? [a,b].
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It is worthwhile to wunderline that the described approach to the
approximation of derivatives is a constructive one. To obtain the spline in the
convex set, we need only the approximate values of function f(x)—z; and values of
error ¢;. This distinguishes this method among the ones connected, for example,
with the choice of optimal steps of differentiation that needs additional
information about the function (norm of elter derivatives, etc.).

The numerical solution of the problem, leading to the problem of quadratic
programming, was discussed in [8, 9], [11]. There the method of penalty functions
was used.

Table 1
€ 0.5 0.05 0.005
I =Sl 1.253 0.174 0.025
E, 3427 0.753 0.184

Table 1 represents the results of numerical example. We consider the
approximate data of the periodic function f(x)=sin (x)+ cos(x), x€[0, 2], given in
the knots of the uniform mesh with the step h=mr/60 and with the different values
of error ¢. This table also contains the values of the norm | f'—S’||, and right
hand parts of the estimate (17), (18) is E,, in case k=2. One can see that the
derivative of cubic spline approximates the derivative of function f well enough for
different ¢ and that the estimate (17), (18) are effective for ¢/h>1 and for &
comparable with h. Its efficiency decreases if ¢/h<« 1. In this case the interpolating
spline estimates are appropriate.
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