Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathemalica
Balkanica

New Series Vol.2, 1988, Fasc. 2-3

Onesided Trigonometrical Approximation
of Periodic Multivariate Functions

Liudmil Alexandrov, Vasil Popov

Many papers have been consecrated to the problem of one-sided approximation
of functions of one variable, see [1]-[7] and the references there. In this paper we
shall consider the one-sided trigonometrical approximation of 2m-periodic
multivariate functions. We shall prove Jackson’s type and Bernstein type
theorems for the best L ,-one-sided trigonometrical approximation using the
averaged moduli of smoothness in L, These theorems are externally similar to
the corresponding theorems in the one-dnmensnonal case (see [3], [6], [7]), but really
the dimension plays an essential role in onesided approximations (see theorem 1
and the remarks to the theorem).
The results were announced in [9] and [10] without proofs.

1. Notations and definitions

We shall denote by M the set of all 2n-periodic with respect to the each
variable functions of m variables (i.e. f(x;,..., X;+ 27, ..., X)) =f(Xys-- s X - - s X))
which are bounded and integrable on

M"={x=(xy,...,X,) :0=x,=2%, i=1,...,m}.

We shall denote the points (the vectors) in m-dimensional space R™ by x, y, ¢,
h, x=(xy,--.,X,,). For the multi-index a=(a,,...,a,) we use the usual notations :

dif m
= 5 = X s
0x%1 0x%2 ... 0xX%" lal ;=1a'

DY

We set also |x|=max {|x;| :i=1,...,m}.
For fe M and xeR™ we define the local modulus of order k of fin the point x
as follows :

(1) o, (f, x,8)=sup {|Akf(1)] :t, t + kheQus2 (%)},
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where
X [k
a170= = (~ 10 () rtewin
j=0
is the k-difference of the function f with step h (in direction h) and

Q52 (x)={y :|x——y|§k6/2}

is kd/2-neighbourhood of the point x with respect to |-]|.
The k-th averaged modulus of smoothness of feM in L, 1<p=oo, is
given by

2 (S, 5)p= | i (fs«,9) “LP’

where

lgle,: =1l @m="{{ lg(x)I"dx}""?, 1=p<co
nm

glle : =sup {lg(x)| : xelI™}.

Both definitions (1) and (2) in the one-dimensional case coincide with
definitions of k-th averaged moduli of smoothness, given in [6], [7]. For the history
of the averaged moduli of smoothness see [3], [7], [8].

The averaged moduli of smoothness have the following properties :

7 (,8), =7 (£8"), if <6,
Tk (f +g, 6)p é Tk (f' 5)? + Tk (g s 5)1”

1 (£,0), <2141 (£ kS/(k—1)),..
If D*feM for a :|a|=0,1, then

P

1.(f8),<Jmé T -y (DY kS/(k—1)),, k>1,
la]l=1
5. 1 (£;40),<(2(A+ 1)) "1, (£.8),, A>0.
6. If feM, D*feL , for all « :o;=0,1, i=1,...,m, then

., (ff9),=2 T & D"flle.

lx|21
a;i =0,

7. Let feL, and D%eL, for all « such that | «|=k, O0<a; <k, 1=Sp=oco.
w(f.0),=c(kmp)d* = DYy,

lal=k
. 0<a ‘=k

where the constant c(k,m,p) depends only on k,m and p.
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Properties 1)-3) follow immediately from the definition of t,. The proofs of
properties 4)-6) are given in L14]. Property 7) can be found in [14]. Let us mention
that the constant (2(A+ 1)**™ in property 5) probably is not exact, but let us
mention the dependence of the dimension m. Also we want to remark that in
property 6) in many dimensional cases in the right-hand side mixed derivatives

2 3
like or s it
0x;0x; 0x;0x;0x,
In the case p=oco the k-th averaged modulus of smoothness coincides with
the usual (uniform) k-th modulus of continuity (see [11], p. 117). The connection
between the integral moduli given by

wy (f,8),=sup {||ALS(*) II,_p :|h| =8} (see [8]), is the following :

Wy (f’ 5)}! é Tk (j; 5)}! é @y (f; 5)«7'

and s. 1. are necessary.

We shall approximate the functions in M by trigonometrical polynomials of
order n. The set of all trigonometrical polynomials of order n with respect to each
of m-variables we define by

m={p:p(x)= X a,,'l',,"'_,,.',,;m,,:'co'sn’lx,sinn’,’x,...cosn;,,xmsinn;;x,,,}.

The best trigonometrical approximation of order n of the function feL ,(n™)
in L, is given by

E,(f),=inf{| /—Pl, : Pem,}.

The best upper (lower) trigonometrical approximation of order n of the
function feM in L, is respectively given by

E}(f),=inf{| P—f|, : Pemn, P(x)Zf(x), xeR™}
E. (f),=inf{I/—Qll,:Q€m, f(x)=Q(x), xeR™}.

The best one-sided trigonometrical approximation of order n of the function
feL, in L, is given by

E,(f),=inf{| PN—Q/|, :P,Qemn, P(x)=f(x)=Q(x), xeR™}.

Here we enlist some of the basic properties of the just defined functionals,
which we need below. When some of the following propositions is valid for each of
E)(*)» Ex (), and E,(-), we write E;(+), meaning any of them.

) E.(),=Ei(f)p Ei(f)e=2E, (/)

i) E,(f)y=Es (/)p+Ex (/)

iii) If Pell,, then E,(f—P),=E,(f), Ei(f—P),=Ex(/),.
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iv) The functionals E;(-), and E,(+), are semi-additive.
v) If A>0, then E(+A4f),=AE,(f), Ex(Af),=AE;(f),

E,(=Af)y=2E,(f)p E 7 (=2f)p=2E . (f),.

vi) If geM and g =<0, then

E,(f+9),=lgl,+EJ (),

vii) There exist unique P and Q in =, for which

Ef(f),=IP=fll, E;(N,=If—Cl, E.(f),=IP-@lI,

and P(x)= f(x)=Q(x) for any xeR™.
Propositions i) — vi) follow directly from the definitions. The proposition vii)
is well known in more general situation, see [14].

2. Integral representation of 27-periodic functions
with mixed derivatives

In what follows, we shall work with multi-indexes which contain only zeros
or unities. The set of all such multyindexes will be denoted by I :

Io={a:a=(0ty,...,0,), 0;=0, 1, i=1,...,m}.

We shall use also the set :I'={a :ael,, a#(0,...,0)}.

We say that 8 precedes « if f;<a,, i=1,...,m (notation f=<a), and that f
precedes « strictly if f<a and B#a.

If xeR™, «eT, then x* denotes the point (xil,...,xilul where iyy...,0, are the
coordinates i for which a;= l(a"1= =a,-|a|=1). When x varies in IT", then x*
varies in II*

Let fand g be 2n-periodic integrable functions and aeI'. Then a-convolution
of fand g is g *,f(x)=(2n)"1* [ g(x% x*—u®)f(x%, u®)du* where a=(1,...,1)—a,

na
SO, X =f(X1s- s Xp)
When a=(1,...,1) this is the usual convolution.

We shall use the following property of a-convolutions: if g=g(x%),
geL (I1%), feL ,(I1™), then

lg *a.f“p§(27t)~IGI Ilg ”1,l %) ”f"LP-

The first Bernoulli functions in the multivariate case are defined by

B*(x)= .l_'Il B,,(x;), where ael’y, and B,(s)=1,
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B, (s)=2 §1 S

sinvs__{n—s, 0<s<2n
0, s=0.

Lemma 1. If B*feL,(IT") for all ael,, then

f(x)=ao+ = B* *,D*f(x),

r
where e

a,=(2n)™" "j""f(x) dx.

Lemma 2. Let ael’ and D*feL ,(n™). If a<pel, then
| B* *, D*f[l,<2"(2m)" " " | fll -

The proofs of these two lemmas are routine and can be made by induction
with respect to the dimension in the first one, and with respect to the number of
nonzero indexes in the second, using Lemma 1.

Lemma 3. (T. Ganelius [2)). Let m=1 and let n be a natural number. Then
E,(B,), =4n%/(n+1), i.e. there exist two trigonometrical polynomials T, and t, of
order n such that:

() T.()ZB,()2t.(). seR’,
(ii) | T,—¢, ”LJ 0.2 =41%/(n+1).
For the multi-index ael’, we set

T (x), t*(x)= 1 tn ()

1 i=

T"(x)='

| 4

(e ]

where T(s)=t3(s)=1, T(s)=T,(s) ta(s)=2.(5);

(B—ty(x)= T (By(x)—ta(x))

itg=1
d

(T—B)(x)= I (T, (x;)— By (xy),

itay=1

(T—tf ()= T (T,(x)—ta ().

itgy=1

Lemma 4. For aeI’ we have

B*—t*= X (—1)=—Pi+1 (B—t)# BP.

p<a
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The proof of this combinatoric Lemma can be done by induction with respect
to the number of nonzero indexes of a.

3. One-sided approximation by means of differentiable functions

The following Lemma is a well-known tool for intermediate approximation
in the classical approximation theory (see for example Ju. A. Brudnii [15)) :

Lemma 5. Let feL,(IT") and k and n be natural numbers. There exists
Sxn€L ,(TI™) with the properties:

a) | fin(x)—f() S 0, (f x,2/n), xeR™,

b) llfen—Sll, S c (ks my (£, 1/n),,

c) for every multi-index « such that o; <k, i=1,...,m we have

| Dy nll, S c(k, m)ni* o, (f; 1/n),,

We shall use an analogue of this Lemma with the restriction that the function
fin is over the function f. As a consequence at the place of w, (£ 1/n), will appear

(£ 1/n),,.

Lemma 6. Let feM and 1 £p< co. For any natural numbers k and n there is a
Sfunction F,, with the properties:
a) 0 Fy,(x)—f(x) S 24 % L o, (f, x, (2km + 8m)/kn),

b) || Frn—fll,Sc(k,m)7, (f; 1/n),
c) For every multi-index a :o;<k, i=1,...,m, we have

| D*Fynll, < c(k,m)ni (£, 1/n),

2 2
Proof. Let 4,={a :a=(—nT£a,,...,7na,,,) :a;,—integers, i=1,...,m}. Let ¥,

be an infinitely many times differentiable function with the properties :
1. 0=y,(x)<1 for every xeR™,
2. Y,(x)=0 for |x|=2n/n,
3. % ¢y, (x—a)=1.

ae A,
4. For every multi-index a we have

| D*,, (x)| S ¢ (le]) o,

Such functions exist, for example we can take

V()= (x)) Z @, (x—a).

where
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- _ exp(—1/(1 —4n?t?/n?), |t]| <2n/n,
Tlx)= T oz o (')_{o, |t]2 2/,

Let v=km and let us consider the function

Fia(x)=fin(x)+ Z o,(f,a,(2v+4n)/vn)y,(x—a),

ac A,

where f,, is the corresponding function from Lemma 5.

The function F, , is well-defined for every x, because for every x in the sum
on the right-hand side only a finite number of terms are different from zero (see
property 2 of the function y,). Let us show that the function F,, satisfies the
conditions of the Lemma.

Let xeR™. Denoting A,(x)={a :a€A,, lx—a|§27n} we have
Fin(x)=f(x)=fin(x)—f(x)+ = o,(fa,(2v+4n)/vn)y,(x—a)=

ac A "(x)

(since ¥, (x—a)#0 only for aeA,(x))

= —w,(f,x,2/nr)+ min w,(f,a,(2v+4n)/vn)
ae A, (x)

= —w,(f,x,2/n)+w,(f,x,2/n)=0

since for every a€A,(x), then Q,,(X)=Qy+ 2xyn(a)-
On the other hand,

Fin(X)—f(x)So,(f, x,2/n)+ max o,(f,a,(2v+4n)/vn)
ae A,.(x)

< ﬁ)v (f, x,2/n)+ @, (f, x,(2v + 8n)/vn) < 2*"~** 1 @, (f, x, (2mk + 87)/kn).

Then b) follows from a) taking the L ,-norm of both sides.
At the end, using property 4) of Y, we have

| D*Fin(X)ISI DYy (X)|+ £ o,(f;a,(2v+4n)/vn)|D*y,(x—a)|

ae A"(x)

SIDYn(x) | +c () o, (f;x,(2v+87)/vn) = 1.

ac A "(x)
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Taking L ,-norm from the both sides, using the property c) of f, , and the fact
that we have only a finite number of terms on the right hand side, we obtain c),
with constant c=c(k, m).

4. Direct theorem
We shall prove the following Jackson’s type theorem for the best multivariate
one-sided approximations :

Theorem 1. Let fe M and 1 < p = co. For every natural number k there exists a
constant c(k,m) depending only on k and the dimension m, such that

E,(f)p=c(k.m) i (f;1/n),
First we shall prove the case k=1.
Lemma 7. Let feM, 1<p=<oo. Then

ES(f),=c(m)z,(f1/n),

Proof. We shall prove the Lemma using induction with respect to the
dimension m. For m=1 the Lemma follows directly from theorem in [3], see
also [6].

Let us suppose, that if fe M (IT™1) ™, my <m, then E ;7 (f),<c(m,) 7, (/, l/n)‘,,,I

Let now fe M (IT") and let us denote by F the function F 1.» from Lemma
Then, using the properties of E, (+), and of F,, we get:

(3) El(),ZIf—Fll,+E; (F),<c(m)z,(f,1/n),+E; (F),.

So we must estimate E, (F),
Using Lemma 1, we obtain
E)(F),<ZE](B** D°F),=XZ E; ((B*—1t°) = D"F)p

ael ael

<X ZTES(B—tyfB = (—1)=—#1+1 D*F),.
aell f<a
We shall estimate all terms in the sum on the right-hand side in the same
way. Let ael” and B<o. If we denote g(x)=B* *,(—1)*-#+! D*F(x), then

ES(B—tp /B » (= 1)+ D*F),=E; (B—t)"" *49),

We shall prove that

(@) ES(B—if" spe),Sclmn-A T nowi | Dhigll,

Nn<y

where y=(1,...,1)—a+p.
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We set as usual g, (x)=max(0,g(x)), g- (x)=min(0,g(x)).
Using the fact, that for every ¢, ¢ <0, we have E,f (¢),<| ¢ ,, we obtain :

ES(B—t)™" #59),SEJ (B—1)"" *59-),

+ES(B=1)7? »5g.),<I(B—t)"? »5g_|,+ES (B—1)"" *z9.),

<(2n)- IHI( )la Biilg_, +EF (B_t)a-ﬁ *ﬁg+),,

sc(mn=Plgl,+ES (B—tf"’ *59.),

Let us denote y=a—p, y=(1,...,1)—a+p. Since a<pf=yel’, yel' and
y#(1, ..., 1), therefore |y |<m.

Let us consider the function H, (x)= H,(x’, x?), which for every fixed x is the
trigonometrical polynomial of order n of best upper approximation of the
function g, (x?,x’), considered as a function of the variables x’. H,(x’,x?) is a
trigonometrical polynomial of order n of the variables x” with coeﬂ'icxents which
depend on x”. It is not difficult to see by induction that these coefficients are
measurable functions of x”. In the case when y=(0, ...,0) we have H, —g+ For
the so defined function H, we have 0=g, (x)<H, (x) for every x.

Using the induction assumption |y|<m and the properties of 7,, we get

|H,—g. ll,,=(f;,;[ I(H,—g.)(x", x7)|Pdx? dx?)\/?
é(.’; (17 Do g+ (x7*) 1/n)E, w7 dx”)'P
=c(lyl) (!ytl (9(x", *), 1/n)L, (n7,dx?)"/P

=2e(lyN(J ( Z_n=mlID"1g(x", )L, @7))"dx")""?

7|§}T
17:1>0

L2(I7)@7=1)(f T n-mb || D g(x",) L, i dx")""

L2 7157
17,1>0

=d(lyl) T n-ml|D"igll,

71SY
17:1>0
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Here we used that obviously t,(g,,6),=7,(4,9),
Let us consider the trigonometrical polinomial (T —t)*~# »5 H,eIl,. We have

(B—tf~* +g. S(T—0F* % H,

since (T—t)* #2(B—t* 20 and H,2g.,20.
Therefore

E:«B_t)a_p *ﬁg+)p§"(T_t)u—p *ﬂHn—(B—t)a_ﬂ *}!g+"p

SIT—tF~? g (H,—g )+ (T =27 *gg. I, +1(B—2f"" *5g.1,

<c(m)n-l=A X n-ml||D"ig|,+c(m)n-==F|g|l,
>0
which gives us (4).
It remains to obtain estimates for the derivatives D”'g of the function g. For
every y,<(1,...,1)—a+p, using L2, L6, we have

| D*s(B? *,D°F)||,<c(m) | D* PN F|| ,Zc(m)ni==F+niz, (f, 1/n),.

Since a<p, y,<(l,...,1)—a+p, then a—p+y,el. From (3) and (4) the
Lemma follows.
To prove Theorem 1 we need one more Lemma.

Lemma 8. Let r be a natural number, r 2m, and D°feL , for |a|<r, 1 Sp= 0.
Then there exists a polynomial Sem, such that

I D?(f—S)ll,<c(mr)n#=" Z | D],

lal=r

for every multi-index B such that |B|<r.

The statement follows immediately from the construction given in [11],
p. 231, if we take o in the formula (6) on p. 231 sufficiently large (in dependence of
r and m).

Now we are ready to prove Theorem 1.

Proof of Theorem 1.
Let first k>1. Using the function F,, from Lemma 6, we get
E:(f—Fk.n+Fk.n)p§ ”f—Fk.ll“p+E: (Fk.n)péc(k’m)Th(./; l/n)p+E:-(Fk.il)p'

To estimate E,’ (Fy,,), we use the polynomial from Lemma 8, Lemma 7, the
estimate of the first averaged modulus by means of mixed derivatives, Lemma 8
and Lemma 6. We get
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E} (Fin)p=Ey (Fra—S),=c(m)y (Fin—S, 1/n),

<c(m) T n~18|| D? (Fn—S)Il,
per

<c(k,m) = n-Binb-k £ || D*Fy, |, =<c(k,m)7,(f; 1/n),
pel

lal=k
We have obtained that for k=m we have
E7 (f)p=c(k,m) (£, 1/n),
In the case when k <m we use the fact that t,,(f, 1/n),<c(k,m)7,(f, 1/n), and

therefore we have the needed inequality again.
We end the proof with the following :

En(f)p=E: (f)p'*'E; (f)p=E: (f),,+E:(——f),,
<c(k,m) 7, (f; 1/n),+ c(k,m) . (=1, 1/n),=2¢c(k,m) 7, (£, 1/n),.

5. Converse theorem

Theorem 2. Let fe M. For every natural number k there exists a constant
c(k,m) depending only on k and m such that

(£, 1/n),<c(k,m)n~* £I (v+1E(f),
v=0

Proof. We shall use the scheme of [8]. Let for every natural number n the
trigonometrical polynomials P,en,, Q,em, be such that

E,(f),=lP,—Q.l,
0.(x)=f(x)=< P,(x), xeR™

Let xen™ be fixed and t,t+kheQy;,(x).
If 0<A%f(¢), then

0sair()= = (~1y+*(})riem

j=k(mod2)’ j=k—1(mod?2)
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=ALP,(1) — 5 (f) (Q.(t+jh)—P,(t+jh))
i=o
j=k—1(mod2)

k

_AP)+ T (f) [P, (t-+ k) — @, (t-+i)— (P () — Co (<))

j=o
j=k—1(mod2)
k k
vz (ew-em
jgk'—’:(:wdz)

SALP,(0)+25 0, (P, — @, X, k) +2* 71 (P, (x) = Q. (x)),

(5) ie. OSALf()<A;LP,(t)+2* " o, (P,—Q, X, k&) + 251 (P, (x)— Qu(x))-
Analogically in the case Af(t)<0 we obtain :

(€) 05 = AL()SIALQ, ()1+2 @y (P, — Q0 x,k8) + 2 (Po(x)— @u ().
From (5) and (6) it follows :

@y (f; %, 8) = @y (Pp X, 8) + 0 (C, X, 8)
+257 1 @, (Py— Qp X, k8) + 257 (P, (¥) — 2, (%)),
) tul0)y S0 (P 8y + 0 (0 D)y + 2 1y (Pa— 0 k), + 2 E, (1),

Remark. Similarly for every two functions f*, f~, f* 2 f= f ~ we obtain
Lemma 9. Let feM, f*eM, feM and f*=f=f".

Then

T (f0), =t (S, 0)p+ 0 (f7,0), + 2 1, (f Y —f 7L k8),+ 2 IS =S I,

__ Till now everything is the same as in one-dimensional case. The essential
difference in the many-dimensional case is the estimation of z,(P,—Q,,kd),.
From property 6 of t, we have :

® 0 (P, = Quk3),S2 T (keJ | D*(P,— Q)

la )21
Since || D*(P,—Q,)ll,<n" | P,—Q,l|l, (Bernstein inequality, P,,Q,en,, see,
p. 111) we obtain from (8):
(9) T, (P,I -0, ké)p <2 z (kén)'“' I P,—Q,ll,= ZE,, (f)p xz (k&n)'“'.

a:oy=0,1 aa,=0,1
la|>0 la|>0
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From (7) and (9) we obtain :

(10) tk(f;é)p—s—'tk(Pmé)p"'Tk(Qmé)p"'zk_x(1+2 z (k‘sn)lalgn(f»p'

|a |>0

Now we shall use Bernstein-Salem-Stetkin scheme. Let us estimate 7, (P,, ),
(the estimation of 7,(Q,,d), follows the same way). Setting n=2% and using
property 2 of 7,, we have:

(11) Tk(Pm‘s)pé,?oTk(Pz'—Pzi""s)p'*"‘k(Pl_'Po"s)p'

Since g =P,i— P,i-1em,, using property 7 of 7, and Bernstein inequality, we
obtain :

(12) 74(9.9),=c(k,m) Z ™| Dgl,<c(k,m) T &=2l]g],.
lalzk lal2k
0sa iSk a‘-o ..... k

Let =n—1=2"%. Then § <2~ for i<s, and !4 21fI< 1. Therefore from (12)
we obtain

(13) 1, (Pi— Psi-1,8), S c, (k,m)3* 2% || Pyi—Pyi-1],
<2c, (k,m)5*2* E i-1(f),.

where the constant c, (k,m) depends only on k and m.
From (11) and (13) we obtain (E_,=Eyé=n"")

o (Pp,n1),< > 2¢c, (k,m)n ¥ 2% E i_,(f),
i=0

(14) <c,(lmn™* T (s+1F 1 E, (1),

s=0
where the constant c,(k,m) depends only on k and m.
Similarly

(15) (@ nY), S s (k,m)n* éo(s+l)"" E.(),

Inequalities (10), (14) and (15) (for =n"") give Theorem 2.in the case when
n=2%. Transition to arbitrary n is standard.
Theorems 1 and 2 give us
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Theorem 3. Let fe M. For 0<a <k, 1 £p =< 0, the following two conditions are
equivalent :

i) 4 (/0),=0(5)

i) E,(/),=0(n"?).

This theorem gives characterization of the best one-sided trigonometrical
approximations in L ,, 1 <p =< co, by means of the averaged moduli of smoothness
in multivariate case, what is the same as in the one-dimensional case. This
characterization is similar to the classical characterization of the best
trigonometrical approximations in L , by means of the classical integral moduli of
'smoothness , (f;9),.
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