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1. The aim of this paper is to point out an operatorial version of a classical
algorithm due to I. Schur in [17]. This algorithm is the precursor of the
layer-peeling procedure that is applied in a broad class of problems: in filter
synthesis, to inverse scattering, to the partial realization -problem... (see for
instance a special issue of “Integral Eq. and Operator Theory” on this theme). But,
the motivation of Schur’s paper came from classical extrapolation theory
(Caratheodory — Fejer and trigonometric moment problem), providing the
structure of an analytic bounded function in the unit disc.

We note now some of the important moments in the evolution of this last
point of view, of course, in connection with our interest : an operatorial approach
of the Carathéodory — Fejér and Nevanlinna — Pick problems is done in [16];
the Sz.-Nagy — Foias theorem of lifting of commutants (see [18]) can be viewed as
a generalized abstract formulation of these problems in[1]; the Nehari problem is
treated [3], ends a series of papers containing generalizations of Schur’s paper [17]
for the set of the liftings of a commutant. The main algorithm in [3] connects the
observable sequence with its choice sequence (in the scalar case of the
Carathéodory — Fejér problem this is exactly the connection between the Taylor
coefficients of a given bounded analytic function in the unit disc and its Schur
coefficients), but it is not obtained by a direct generalization of the Schur
algorithm.

Returning to the present note, we develop an operatorial version of the Schur
algorithm by adapting the initial argument in [17]. But our principal interest is to
introduce some associated functions and to point their role in replacing the Szegé
polynomials.

This paper is a revised version of INCREST Preprint no. 66/1983.

2. In this section we obtain an operatorial version of the Schur algorithm.
The scalar case was done in [17] in the following way : let f be an analytic function
in the unit disc D={|z| <1} and:

{f, =/ 9.=/,0). n=1
(2.1

_ j;l(z)_gn
S &= 5@y

lz|<1



Operator Schur Algorithm. .. 245

then |f(z)]<1 in D if and only if |g,|<1 for all n=1 and if Ig,,o|=1 for some
noeN, then g,=0, n>n, and f is a rational function with the polles on |z|=1.

The point here is that the one-to-one analytic mappings of the unit disc onto

—a

. . z . .
itself are given by c——_z, lc|=1, |a| < 1. Now, we develop an operatorial variant
a

1—
of this fact. For two separable Hilbert spaces 5# and ¢ define

B(H, H)={f:D>L(H, X)/f analytic in D and |f(2)||<1 for zeD

(here & (#, ¢") denotes the set of the linear bounded operators from ¢ into ¢
and | .| is the operatorial norm in Z(3¢, X)).

For a contraction Te % (#,X) (i.e. | T||<1), we consider D, =(I — T*T)'/?
and Z,=D;2#, and we define the operator function

U T): H DDy, » X DDy, |z]<l.
2.2) {

T, zD;*
ve. T)=[D —zTT":I
T

and for fe #(s#, A’) we consider the linear fractional map

(2.3) ColND=T+zDpf(2)I+2zT*f(2)) 'Dy: H—->A".

One obtains the formula:

24 I1—Cy(f)2)*Cu()?)

=D;(I+zf *@T) (1 =zl f*@f O +L{Tf (L)™' Dy

which proves in particular that Cy(f)e # (5, X') (in the matricial case, such kind
of linear fractional maps are intensively studied, for instance in [15, 11, 14,...].

We need now to recall some remarks regarding the canonical decomposition

of the functions in #Z(#, ') (see [18]). Thus, for a contraction T e L (3, X') we
have

2.5) T=Ty®T,:ker D DD —ker D*DD*,
where T, is a unitary operator and T, is a pure contraction in the sense that
I T,hll <k, h#0. For fe # (¢, X'), the maximum moduls principle leads to the
structure

(2.6) f@)=Ty®f,(2) :ker D PP —ker D;+D D,

where T=f(0), T, is the unitary part of T and f,(2z) are pure contractions.
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2.1. Theorem. For fe B(2;, 2,*), where T=f(0), the equation

f=CU(-.T)(F)

has a unique solution Fe B(Dy, Dr+).

Proof. We devide the proof into steps.

Step 1. I—f*(0)f(z) is one-to-one for all zeD.
The statement is clear for z=0, so for z#0, let he 2, with

(I—*0)f(z)h=0,

consequently,

1B 112 =(h, O @h)=(f(0)h, f(2)h).

By the maximum modulus principle applied to the function fi@2)=f(2)h it
results

IAIZ= IS ORIIf@RI = sup IO @RIZA)

IKIs|zl+¢

Thus, either f(z)h=0, so h=0 or ||[f(O)h| = sup If(©)h|l and invoking again
: N Kis|zl+e
the maximum moduls principle, we conclude that f, is a constant function,

consequently h=0.
In a similar way we can deduce that I —f™(z)f(0) is one-to-one for all ze D,
consequently, (I —f*(0)f(z))2 is dense in 2.

Step 2. Let f(z2)=T+ T,z+ T,(z?)+... be the Taylor expansion of f.
It easily results that T,=D,+*T.D,, n=1, so

I-Tf(2)=DI—zT*T{—z*T*T ,—..)) D,
and as D, is one-to-one on 2+, if we consider
H,(2)=1—zT"T{—-2*T*T;—...: D, >D,

then H, is analytic on D. We also define the analytic function on D,
H(z2)=H,(2)Dy : D +— 2 then H(z)2; and H(z)2, are dense in 2 for all zeD.

To prove this, let hoe D 5#, hyDH(z)P, so, there exists h, € 2, such that
(Dzh,, H(z)h)=0, for all he 2 ; hence, (I —f*(2)f(0))h,, h)=0, he 2, and by the
first step, h, =0. :

Step 3. Fix zeD. Defining the linear transformation
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“—T+Dpf(eNI—Tf(2) D" : H2)Dr—>Dr*

by .
“—T+Dpf(2)I—T*f(2)) " 'D;")H(z2)h= — TH(2)h+ D1*f(2)h ; he D,

we readily check that it is contractive, hence we can uniquely extend it to a
contraction from H(z2)?,=2 , into 2,+ and we denote this extension by F,(2).
Step 4. By the definition,

(I+T*Fy(z))H(z)=Dy

cdnsequently (I+ T*F,(2))H,(z)=1. Analogously, H,(zXI + T*F(2))
=1, and since H, is analytic in D, I+ T*F, is also analytic in D

Step 5. We verify by a direct computation the formula

T+ Dp+F,(z2XI + T*F(2)) "Dy =f(2).

Step 6. According to the Step 5, D,+F,(zXI + T*F(z))” ' D is anlytic in D,
F,2XI+T*F,(z))"! is analytic in D. As F,(2)=F,(2)(I+T*F(z))"' H,(2) we
obtain that F, is analytic in D, || F,(2)|| =<1 for ze D and F,(0)=0.

Using Schwartz Lemma, it follows that there exists a function
Fe®(25,92*) such that F (z2)=2zF(z) for zeD, and f=Cy(F).O

Now, we can describe the Schur algorithm for # (3¢, ) : Let fe B (¥, X)),

T=f(0) and f=T @/, is the canonical decomposition of f. Define f, =f,€ # (2.
9.+) and by Theorem 2.1, there exists a unique f,e®(2r, r') with

fl = CU(' .T)(fz)'
Define G,=T. Repeating this procedure, we have

@7 { 51=1,€B( @Dy, 277). G,=/(0). nzl,

f;-.p=CU(-.G,,)(f;-+1)» fn+1eg(gcn- @a;)-

2.2. Theorem. There exists a one-to-one correspondence between the set
B(H, A) and the set of sequences of contractions

{Gu}n=1, G €L (H, X), G,e&L(Dg, _y Der_ ) n>1
Proof. By taking into account the Taylor senes, we readxly check that the

Taylor coefficients of f are given by
2.8) T,=T,(G,..... G,)=form (G,,..., G.-1)+Dg;... Dg:_ G,Dg _ ...Dg,,

where form (G,,..., G,) denotes a formula depending only on G,,..., G,.0

2.3. Theorem. The sequence {G,}>-, given by the algorithm (2.7) coincides with
the choice sequence associated to a corresponding lifting of the commutant T of the
contractions O, and Oy by the algorithm in [3]. \
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Proof. The algorithm (2.7) describes the set & (5¢, ) in such a way that
the Taylor coefficients belong to a certain “operatorial disc” , exactly as in the
algorithm in [3]. Consequently, the centers and left and right radii coincide. [J

3.. From (2.1) we obtain by induction

_ 2 }(2)f, 4 1(2) + Bi(2)
2B+ 1 (D) + AL (2)

(3.1 /@)

where o/, and %, are polynomials of degree n—1,
o (2)=1, B,(2)=g,,

(3-2) A 4 1(2)= A (2) + 2G4 1 B,(2)

(33) B /()= 2B2)+ 1A 23

for a polynomial p of degree n, we use the notation p*(z)=z"p(1/2), p(z)=p(3) .
There is a close connection between the polynomials </, and 4, and
orthogonal polynomials on the unit circle.
Thus, let u be a positive measure on the unit circle T={|z|=1} with
u(1)=1 and

\ 12" ¢ityz
.?'(z)—ﬂg Edﬂ(t)

is an anlytic function in D with Re# (z2)20. If we define f(z)=(&F (z2)—1)/
(z(#(2)+ 1)), then fis a contractive analytic function in D. Applying the Schur
algorithm (2.1) to f, one can state the following classical results (see [12])

2 (2)f s 1(2) +Y3(2)
=20, (2)fn+1(2) + @3(2),

(3-4) F(2)=

where {¢,}.>, are the orthogonal polynomials associated to the measure x and
{¥n}a=0 are the so-called polynomials of the second kind ([9, 12]). Moreover,
for n>1

(3.5) D,(2)=2 }(2) — B,(2)

(3.6) W ,(2) =z }(2)+ B,(2),

where @, (¥,) is obtained by dividing ¢,(i,) by its highest coefficient.
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The aim of this section is to find the correspondents of these considerations
for the situation analysed in Section 2. First, we recall the so-called Redheffer
product ([15]). For

the Redheffer product is
e 3]
where X=A,+B,AI—D,A)"'C,
Y=B,A(I—D,A)"'D,B+B,B
Z=C(I—-D,A)"'C,
W=C(—D,A)"'D,B+D

whenever the relevant inverse exists. We have C, * C,=Cy ..
Consequently, from the algorithm (2.7) we deduce that

f=CU(.‘Gl)CU(.'62)--- CU('-G'.._I)(I;')

and if we define U,=U(:, G,)* U(-, G,) *...*U(-, G,) then U, is an inner function
in D (because U(-, G,) are inner functions) and

(3.7) f=Cy, ().

Moreover, if

A, B,
U":[C,,. D"] DD N D D

then
A4,()="G,. B,(2)=2zDg;. C,(2)=Dg,. D,(z)= —zG;
and, for n=1,
(3-8) Aps1(2)=A,(2)+ B(2)G, 1 (I = Dy(2)G, 1) " ' Cl2)
(39) B, (2)=2B,(2)G,,(I=D(2)G,+,)” 'D(2)Dg;, , +2B,(2)Dg; , |

(3.10) Cosr(@D=Dg, , (I=Dy2)G,.1) ' C,(2)
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(A1) D,y @ =x—Gyyy+Dg,, (U~DyAGys ) DDz, )

(it is easy to see that I—D,(z)G,,, is bounded invertible in D).
Let us state an important property of the functions {4,};% ;.

3.1. Theorem. A,—f as n— oo, and the convergence is uniform on the compact
subset of the unit disc.
Proof. As A, is analytic and contractive in D let

A ()= T APH?

k=1
be its Taylor expansion. We will prove (and this will suffice) that

(3.12) AP=T, 1=<k=n, n2l.
We have
f(@)—A2)=Cy,_ (XD~ Cy,_,(GX2)
=B, (N2 — D, — (2)(2) " = Gl = D, (2)G,) " )C,— (2.

But it is easy to see that B,(z)=2z"B,(z), where B, is an analytic function in
Dand B,0)#0 and,asf,(0)=G,, wegetone more z in f,(z\I—D,_(2)f,(2))"*
—G,(I-D,_,(2)G,)" ! in order to obtain (3.12). O

3.2. Remark. Theorem 3.1 can be viewed as an approximative (and also
partial) Darlington synthesis for functions in % (3, ') (see, on this subject
[6, 4],..., for exact Darlington synthesis see [2, 8]).(]

3.3. Remark. We have to explain now (3.7) reduces to (3.1). That is when
Dg are invertible operators for all n= 1, left operatorial orthogonal polynomials
are associated with the semispectral measure F on T determined by {G,};%, (see
[5], also for -additional references on matricial orthogonal polynomials).

Defining operatorial polynomials o/, and 4, by the formulas (3.5) and (3.6),
we easily check that .o/, are invertible operators for zeD, A (z)=RB (2)/ , *(z) and
so on... [

4. In this section we briefly describe an extension of the context when a Schur
algorithm works. We mention some other extension in [7, 13].

Thus, we first note that to give an element fe 2 (#, X") is equivalent to give a
contractive analytic Toeplitz operator T, of symbol f. S, is the right unilateral

shift on [2(N, 2 T =f(0)).
Then, the first step in the Schur algorithm (2.7) can be rewritten in the form:

4.1) T, =Crpe Ty,
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where

G,, S.Dg
4.2) RD(GI)=[D61 —S Gél.:l
1° +

and G, means the diagonal operator on I*(N, ) with values into I>(N, '), the
diagonal element being G,.
Now, let us consider the contraction

Toor O ... . .
(43)C=< Ty, Ty O ... % AN, @ #)-IN, & X))
i=0 i=0
TOZ' T12' T22'

A Schur algorithm for this operator is the following:

4.4) {Cl =C, G, =the O-principal diagonal of C,, n=1
) Cn=CRD(G )(Cn+ 1) -

We obtain an analogue of Theorem 2.2.

4.1. Theorem. There exists a one-to-one correspondence between the set of the
contractions C given by (4.3) and the set of the sequences of contractions
{Gijfiz1.00 aZi} Gue L (K, X)), GjjeZ(Dg,,, 7 @G;j_l)’ for j>i.0O

4.2. Remark. We can obtain an explicit connection between T;; and G,
also in the form that T;; belong to certain operatorial balls.

We do not give here these formulas because they readily follows from the
analysis in [S]. O '

4.3. Remark. The operators of the form (4.3) appear as transfer operators
for time-variant linear systems (with the time given by N) (see, for instance [10]).
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