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1. Introduction

It was claimed in [2] by M. M. Dragilev that Dragilev spaces of different
types determined by rapidly increasing functions cannot be isomorphic. It was
shown in [4] and [5] by the author that Dragilev spaces of types 1 and oo and of
types —1 and O can be isomorphic. In [6] Dragilev spaces of type 1 which are
isomorphic to some Dragilev space of type oo were characterized.

In this note, we characterize those Dragilev spaces of type —1 which are
isomorphic to some Dragilev space of type 0 and those spaces of type 0 which are
isomorphic to some space of type — 1, that is we find those Dragilev spaces which
are in the intersection of the class of the spaces of type —1 and of type O.

We note that Dragilev ‘spaces of type —1, that is L (a, —1) have the

property that Ext(L (a, —1), L, (a, —1))=0 (see [3]). On the other hand
subspaces and quotients of nuclear and stable Dragilev spaces of type 0 have been
characterized (see [1]).

2. Preliminaries

An L ,(a,r) space, also called a Dragilev space, is the Kothe space 4(4)
generated by the matrix 4=(af), a¥=expf(r,a;), where f is an increasing, odd,
logarithmically convex function (i.e. the function ¢ (x)=logf(e*) is convex on R),
a=(a;) is a strictly increasing sequence of positive numbers which approaches
infinity rapidly enough to make L ,(a,r) nuclear and (r,) a strictly increasing
sequence with r=limr, and —oo<r=<+oo (see [2]) An L (a,r) space is-
isomorphic to L (b, 1) (resp. L (b, —1)) if 0<r<co (resp. r<0). Hence basically
there are four types of L ; spaces : —1, 0, 1, + co. Since f'is logarithmically convex,
for all a> 1 the function f(ax)/f(x) is increasing and either has a finite limit for all
a>1 or approaches infinity for all a>1 as x—oo. In the first case f is called
slowly increasing and in the second case it is called rapidly
increasing. It is well-known that L (a,r) is isomorphic to a power series space
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if and only if f is slowly increasing. In this note we shall consider only rapidly
increasing functions f, and nuclear L ;(a,r) spaces.

For the definition and the properties of the functor Ext(E, F)=Ext"' (E, F) on
the category of Fréchet spaces we refer the reader to D. Vogt [9]. It was shown in
[7] that for two Kothe spaces 4(A) and 4(B), Ext(4(A), A4(B))=0 if and only if the
following condition holds :

i af
b b‘,')

It was shown in [3] that Ext(L ;(a, —1), L (a, —1))=0 for all f and a and
Ext(L,(b,0), L,(b,0))=0 if and only if (b,b)cHP, i.e. the set of all finite limit
points of the set {b/b; :i,jeN} is bounded.

0
3

aj
(S3):vq3apk VK.m I3nS>0:V,; §Smax(ﬁ,
g

~

3. Results

We first note that the generating matrix of L ;(a, —1) (resp. L,(b,0)) can be
given by (exp(—f(ry a;))) (resp. (exp(—g (s, b;)))) where (r,) strictly decreases to 1
(resp. (s,) strictly decreases to 0).

The proof of the following proposition has been given in the proof of
Proposition 2 in [5]. But for completeness we present it here.

Proposition 1. If L (a,—1) and L, (b,0) are isomorphic then there are
subsequences (j,) and (m,) of N with j, =1 and a sequence (i,) of indices such that

g(sjk b)Z f(rm, @)y STyt ai)gg(sjk_” b)), izi,.

Proof. Since the spaces are isomorphic, their diametral dimensions are
equal. Since both of them are nuclear G,-spaces, we have A(L,(b,0))=L(b,0)
and A(L ;(a, —1))=L ;(a, —1), and so L,(b,0)=L ;(a, —1) (see [8]). This means
that the coordinate bases of L, (b,0) and L ,(a, —1) are equivalent and so the
identity operator I :L,(b,0)—L ;(a, —1) is an isomorphism. Also using the fact
that the functions f and g are rapidly increasing, we have that

(i) V K31 3A>0:g(sb)=Af(r,a)=Af(r,4, a;), large i,
(i) Vv j 3 m 3 B>0:f(r;a)=Bg(s,b)=Bg(sn+, by, large i.

Now the claim follows.
_ Proposition 2. If for each c> 1, the set {a,/a; :i,jeN} has a limit point in the
Interval (1,c) then L, (a, —1) is not isomorphic to any L (b,0).

. Proof. We assume L ;(a, — 1) is isomorphic to some L (b, 0), and take s, 0
With s,/s,4,—00. By Proposition 1, we find (n,) and (m,) such that

g (s'lk b‘) g f(er ai)’ f(er +1 ai) g g (snk +1 bi)’ i; ik-
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Given k= 1, by assumption the set {a,/a;} has a limit point « contained in the
interval (1,r,,/r,, . ) Since a>1, there is g=q(k)=k such that a>r,, .,/r
So the set

mgq 4+ 2°

L={(ij) :mettgig Tme y

mg42 A Ty s

is infinite. Moreover, the projections of I, onto the first and second components
are infinite sets. Now for (i,j)el,‘,igi,,ﬂ,jgiq we have

Q(S..,,+2 bi)gf(rmq+zai)gf(rmq+l aj)—Z—g(anH bi)’

and so b;/b;2s,, . /Su,,,

J="nq+

Also for (i,j)€l,,iZix+2, j2i, we have

g(snk+3bi)§f(rmk*z+l ai)§f(rmu+2ai)éf(rmkaj)ég(snk b_i)’

and so b;/b;<s,,/s,, .,

Hence the interval [s, ., /Sa,, ;> Sn/Sw,, ,] contains infinitely many b,/bj, and so
at least one limit point of the set {b,/b;}. Since s,_, /s,  ,—0c0 as koo, we have
that the set of finite limit points of the set {b,/b,} is unbounded, and Ext(L(b,0),
L, (b,0))0.

Now we give some positive results.
Proposition 3. If r,\1 and r,<r,, then

Sreeq ai)< frva)

f(r'ai) =f(rh+1 ai)’ i,k,teN.

Proof. Since for t<k+ 1, the inequality is obvious, we consider the case
t>k+1. ¢(x)=logf(e) is convex. Given i and t>k+1,

Slrisera)_o (log(ri+1a))—@ (iog (r.a)

lo
g S(r.a) logr,,,—logr,

(logry+,—logr,)

¢ (log(ra) — ¢ (1og (re+1 4,))
1 —1
logr,—logrii. (logri ~logr)

1A

=(lo S(rea) logrys,—logr,
Sf(rev1a;) logr,—logry.,

Since r,>1, logr,+, —logr,<logr,,,;<logr,—logr,.,. So we have the result.
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Proposition 4. If lim inf(a;+,/a;)>1 and L 4(a, —1) is isomorphic to some
L, (b,0), then there is a sequence w1 and a sequence of indices (p,) such that

Sy ai) f(u,‘ a,~+1) .
S, a")éf(“kﬂ aiv1) keN, iz p

Proof. We choose (r) as in Proposition 3 and (s,) any sequence which
strictly decreases to 0. Since (a;) is strictly increasing and lim inf (ai+1/a)>1, we
have that inf(a;+ ,/a;)> 1. By passing to a subsequence of (r,) (if necessary) we may
assume that a;,,/a;=r,, for all i. Then by Proposition 1, we choose strictly
increasing sequences of indices (j,) and (m,) with j, =1 such that

S; .
g i k=4
Sjy Sk

and ‘
9(s; ) Z f(rm @) S, a)zg(s;.,, b) iZie
Then for any k,i,
T @141 > Gix 1 2T +1Gi
and so for i=i,
(5.5 +1)Z f(rm @is 1) Z f(rm +10)29(s;, b)Zg(s, b).

Hence for i=i;., sjzb,-ésjkb.+l and sj4b,§s,“lb.'“-

Let ¥ (x)=logg(e*), which is convex. Then for k=4, iZix+1,

9 (sjz b;) _ Y (log (sjz b)) — (log (514 b))

log _ | o |
g (sj‘ b)) log Sj,— log 55, (log S5, log 314)
¥ (log(s;, bis 1))~ (108 (550, b
é ( ( 'Ik +1)) ( ( Jk+1 +1))(logsj _logsj )
IOgSjk—logsij A 3

g(sjkbi+ 1) 108(3_;2/314) g(sjkb“.,)
g =<log :
g(sik+1bi+l) log(sjk/sjk+l) g(siknb""")
So for k=4 and i=i,+, we have
g(s,zbi)s g (S bi+1) ’
g(sj4bi)—g(sjk+lbi+l)

hence by Propositions 1 and 3, for k=1, iZix+a,

=(lo

f(rmzai)< g(sjzbi) <g(sj2bi) g(sjk+3bi+l)
f(rmaai)=f(rm3+lai)=g(sj4bi) g(sjk+4bi+l)

IIA
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f("m.(+2+1ai+1) f(rmk+l+1al'+l) f(",..,‘ﬂa.-“) rf("...,(“a.'ﬂ)_

- f("m.‘“anl) = f(rm“‘awx) =f(rmk+l+1ai+1)—f(rmk+2ai+l)

Let uy=r,, > P=lk+a

Proposition 5. Suppose that liminf(a;+/a;)>1 and there is a sequence ()
which strictly decreases to 1 such that

Sy a) _ fuaivs) | i
f(uza‘)éf(“kilaul)’ k21, izi.

Then L ,(a, —1) is isomorphic to some L,(b,0).

Proof. Since (a;) is strictly increasing, the condition liminf(a;+ /a)>1
implies that inf(a;+,/a;)> 1. By passing to a subsequence of () if necessary, we
may assume that u?,; <u, and a;,,/a;>u,. Then Proposition 3 also holds. Then
we have

f(“k+ 1 ai) f(“k ai) .
(1) f(uk+2ai)§f(uk+lai), hkeN

f(“1 a.) f(ukai+l) :
2 =< , k=1, izp(k),
( ) f(uzai)—f(uk+lai+1) p( )
where p: N—N is a strictly increasing function.
We let iy—1=min {p[zc—l) :k=2}=p(1), and for i=i, we define
k(i)=max {k :p(k—1)<i—1}. Then -
‘ 2=k(ig)<k()<k(i+1), iZio

i))—1)§i—1. If we write (2) above with k=k(i+1)—1 (we

limk (i)= d p(k
l::i'e (2 (k ?io+a1r)l— 11))(§(1 then

f(“l ai) f(uh(i+ n-1 ag) i~ s
(3) f(“z ai)é f(“k(u- 1) ag) =

Next we choose s> 1 and fix it, and define s, =s~*. Then we define a sequence
b=(b,), i=i, as follows : b,-o =1 and b;,, is inductively defined by

1 Sk +1) Di+ 1 =1 log f (ki +1) i+ 1)"108f(“1 a;)
og(— ) =loBs; ea)=l 0
S, 0; ng(uk(i+l)—lau+ 1) 08f(“k(;+1)au+ 1)

© Since a;4y/a;>u, >u,/u, for all i,k, the right hand side is positive, so the left
hand side is positive, that is s, b; <Ski+1)bi+1.
By (3) definition of b;., and logs,—logs,+; =logs, we have that

1°gf(“1 ai)" l°gf(“2 a,-) S‘°8f(“k(i+ 1)Bi+ 1) — l°gf(u1 ai)
log(s, b)—log (s, b)) ~— log(sui+1 bi+ 1)—log (s, b)
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lng(uk(i+ 1)—-18i+ 1)_1°gf(uk(i+ 1)3i+ 1)
@) < )
10g(sm+u—1 bi+1)—108(sm+1)bi+1)
By (3) we have that
fu iH—-1a U a;— » 5
( k(i) — 1 i)gf( 1 Qi 1)’ iZig+1.
f("w) a,) f(“z a;- 1)

Since right hand side approaches infinity as i—+co we choose i, =i, + 1 such
that f(u, a; - ) f(uy a; ~1)>s. Then

1 <1°gf(“wl)— 1 ail)_Ing(uk(il)ail).
logs

Now for i=i, and for 1<k=k(i) we define ¥ (log(s,b,))=logf(r,a,) and
Or.i=(log(s b)), ¥ (log(syb;))) and join the points
Qk(il).ll_’ = Ql.il—’ T Qk(i)_{—'Qka)—x.i" ot
—'Qz.i—’Qx.i"’Qk(H 1).i+1 —’Qk(t+ 1)-1,i+17>""°

by line segments. This way Y is defined for all x=log (s,‘(,l ,b; ). For
x=log (s, b; ). we define ¥
¥ (x)=log f(ura ) a; ) — 108 (skq, bil) +x.

It is clear that ¥ is increasing. By (1) we have that ¢ is convex within the i-th
block, and from (4) it follows that the slope of y increases when we pass from the
i-th block to the (i + 1)-st block. Finally i, was chosen in such a way that the slope
ﬁ» to Qu).i, is smaller than the slope from Qy,,., t0 Quq,y-1.i,-

ne

S ai)

of y from (0, ¥ (
Now we de

X, ogxgs,‘(,l,b,‘

" Sky by,
g(x)= evllogx) Suip by <% -
—g(—x), X§0

Then g is an increasing, odd function with logg(e*)=y (x). Finally for i>i,
and 2<k=<k(i) and so for k=2 and iZmax{p(k—1)+1, i,} we have
f(ua)=g (s, b)), which shows that L (a, —1) is isomorphic to some L, (b,0).

We summarize the last two propositions in the following theorem.

Theorem 1. Suppose L,(a,—1) is nuclear and liminf(a;,, /a)>1. Then
L ;(a, —1) is isomorphic to some L ,(b,0) if and only if there is a sequence (u,) which
strictly decreases to 1 such that ‘
) f(ulai)é f(ukai+1) R kgl’ l'gi,‘.
S(uza)= fur+1ai44)

For the general case we have the following theorem.
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Theorem 2. Suppose L ,(a, —1) is nuclear. Then L s(a, —1) is isomorphic to
some L ,(b,0) if and only if the following conditions hold : there is a subsequence (a;,)
of (a;) and a sequence (u,) which strictly decreases to 1 such that

. S,
(i) lim inf - 1,
a, . -
(ii) lim —1"2—1,

n— o al,.

f(“x at,.) f(“t ai..ﬂ)
f(“z ai,.)éf(uk+l ai,.“)’ RERk

for some sequence (p,) of indices.

Proof. Necessity. Suppose L (a, —1) is isomorphic to some L,(b,0).
Then by Proposition 2, there is ¢>1 such that the set of limit points of {a,/a;} is
contained in the set [0, 1Ju[c, + o). We let a=(1+¢)/2>1, and i, = 1. We choose
i, as the smallest integer n such that a,/a; =, and then we choose iy as the
smallest integer n such that a,/a; =a. We continue this way and get a strictly
increasing sequence (i,) of indice$ such that

(iii)

Qs Cipyr—1
=a, <a.
a;; a;, _
It follows from the property of ¢ that lim(a,,,  _,/a;)=1. So we have (i) and
(ii). From Proposition 1, it follows that if L ,(a, — 1) is isomorphic to L, (b,0), then
L ((a;), —1) is isomorphic to L((b;),0). This together with (i) gives (iii).
Sufficiency. By Proposition 5, from (i) and (iii) we have that L ;((a; ), —1)
is isomorphic to some L ((b;,), 0) with f(u, a; ) =g (s, b; ), n=n,. If for some n, there
is an i such that i,<i<i,+,, we define b, in such a way that the sequence (b,) is
strictly increasing and lim (b, , _,/b;)=1.
Now given k we find ny such that for n=n,,

ai,.+,—1< u, b.‘,.ﬂ—l Sk

S .
a‘" Ug+1 bin Sk+1

If n=zn, and i,<i<i,4,, then

a; _ U, b<sk

i
’
a; Uy by Sk

in

and so for n=max {ny,n;+,} and i, <i,+;, we have
Suns 1 a) = f(uy a‘") =g (s b(,.) =g(s bt)a
g(sk+1b)=g(siby) =S a,) <f(w ;).
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So L ,(a, —1) is isomorphic to L, (b,0).
Now we consider the other case, namely we try to characterize those L,(b, 0)
which are isomorphic to some L ,(a, —1).

Proposition 6. If L, (b,0) is isomorphic to some L ;(a, —1) then there is a

sequence (s,) which strictly decreases to 0 and a collection of indices (px..) such that
g(sk+1 bi)s. g(sk bi)

g(sub) Tg(sksrb)’

Proof. Let (r,)~1 be such that r},;<r,. By Proposition 3 we have that

f(rk+lal)s f(rea) |

frua) ~flrisra)’

Let (t,) be any sequence such that (z,) 0. Then by Proposition 1 we have
subsequences (j,) and (m,) of N with j, =1 and a sequence (i,) of indices such that

9(t;,0)Z f(rm, a) S(Pm+1 ai)gg(tjk-n b), iZiy.

We let s, =t;, and py,=max {i,,i,}. Then for u>k+1, m,>my,,2m,+1 and
so for iZpy.

kgl, u>k+1, igpk'.,.

i,k,ueN, u>k+1.

g(se b)) 4 g(t;.b) S @) >f('m.,+1ai)
g($k+ 1 by) g(tjk+, b) S (rm+18)~ ST, a;)
g(t,,‘“b,)_g(s,‘ﬂ bi)_
= g(t;.b) ~ g(sub)

Proposition 7. Suppose that lim (b; . ,/b;)=co and there is a sequence (s,) which
strictly decreases to O such that

g(se+1b) _ g(sib)
g(s.b) ég(s“’ 1b)’

Then L,(b,0) is isomorphic to_some L  (a, —1).

Proof. The hypothesis is satisfied by su{:sequences of (s,) as well. By passing
to a subsequence of (s,) we may assume that s,/s,<s,/Sx+.

Given k, we find i, such that s,/sy+1=<b;+/b;, for i=i,. Then for i=i,

k=1, u>k+1, i=pga

S;b; =5, b;Ssk+1biv1S5:bisq.
If Y (x)=logg(e*), then for i=i, we have -

logg (51 b)) _y (log (s, b)) — ¥ (log (s,
g(s2by) logs, —logs,

< Y (log (sx bi+ 1)) =¥ (log (Sk+1 bi+ 1))
- log s, —log s+

b)) (logs, —logs,)

(logs, —logs,)



274 Mefharet Kocatepe

g(sk b+ 1) l°g 1/32) g(sk b 1)
= 10 10 N
( gg(sk+1bi+1)) IOg(Sk/Sk+1) gg(sk+lbi+1)

We take u=k+2 in the hypothesis and find a strictly increasing function
p :N—N such that

g(su+1b) _ g(seby)

k=1, i=zp(k),
g(sk+2b) g(sk+lb) - p()

(Slb) g(s,‘ |+1) )
0025)=90ks1bre1)’ =D izp (k).

We define i, and k(i) as in Proposition 5. Then we take any sequence g Nl
such that r./ry 4, §r1/r2 his is possible since lim (r,/ry+1)=1 and r,/r, > 1.) Then

logg(slb)—logg(szb) 1089(&(.+1) xb-+1)—1°gg(5k(.+1)b.+1)
logr, —logr, = log ria+1)—1—10grki+1)

Next we define a sequence a=(g;), i=i, as follows: a; =1 and g;4+, is
inductively defined by °

logg (s, b;)— lOSg(szb) logg(s,‘(,ﬂ)b,H)—logg(slb)
logr, —logr, = log (rii+1)@i+1)—log(ry a)

logg(sk(|+l) 1b.+1) IOSQ(Sk(.+1)b.+1)
logria+1y-1—10g7ki+1)

The rest of the proof is exactly the same as the proof of Proposition 5, so we
do not repeat it.

Now we consider the most general case.

Proposition 8. Suppose Ext(L,(b,0), L,(b,0))=0 and there is a sequence (s,)
which strictly decreases to O such that

g(se+1b) _ g(scby)
g(s b) g(5k+1b)

Then L ,(b,0) is isomorphic to some L ,(a, —1).

Proof. Since Ext(L,(b,0), L,(b,0))=0, there is M >0 such that the set of
finite limit points of the set {b;/b; :i, ]eN} is contained in [0, M]. As in the proof of
Theorem 2, we choose a strictly increasing sequence (i,) of indices such that
o

k=1, u>k+1, iZpy,.

—b""“>M+1 b'"““<M+1
b, = > T, '

Then we have that lim(b;,, /b, )= oo (if not, then it would have a bounded

subsequence and so {b/b,} would have a finite limit point greater than M +1).
Then by Proposition 7 we have that L,((b;),0) is isomorphic to some
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L ;((a;,), —1) with g(s, b, )=f(r.a;), n=n,. For i,<i<i,,, we define g, such that
(a;) is strictly increasing and lim(a;,, _,/a,)=1.
Now given k, we find m> k such that M + 1 <s,/s,,. Then there is n, such that
a;.. -1/a;,sn/r, for n2n,. If n=zn, and i, <i<ip4y,
b; b.',.,,1 -1

a 4., .- T
L AL V SIS g3 __'.si_lg_“,
- - a, =  aq T

and so for n=max {ny,n,} and i,<i<i,4,,
9(smb)=g(sib;)=f(rca,)<f(r, a),
Srma)=f(rea,)=g(sib;)<g (s by)-

Now we combine Proposition 6, Proposition 8 and the fact that Ext (L, (b,0),
L g?b, 0)=0 is a necessary condition for L,(b,0) to be isomorphic to some
L ,(a, —1) in the following theorem. )

Theorem 3. Suppose L ,(b,0) is nuclear. Then L ,(b,0) is isomorphic to some
L ;(a, —1) if and only if the following conditions are satisfied :

(i) Ext(L (b,0), L, (b,0))=0.

(i) There is a sequence (s,) which strictly decreases to 0 and a collection (Px.u)
of indices such that

g (s b)) ’

g(sk+1bi) .
, k=1, u>k+1, iZpg,.
9(3k+1bi) Pr

9(s.b)

I\
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