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Fixed Points and a Condition Concerning
Selfmappings of Ordered Sets

Puro R. Kurepa

Setting up some results of Kurepa D. 1964:4, 1975:2, we prove a general fixed point theorem relative
to ordered sets (E, <) and involving a condition presenting a special kind of surjections on an
important part of (E, <).

1. Let (1:1) (E, £) be an ordered set; in general (1:1) is not an ordered
chain. For any selfmapping s:E— E it is natural to consider following 3 parts of E:

(1:2) Ef:={x..xeE&x<sx}
(1:3) E,:={x. .xe E&sx=x}
(1:4) E(s): ={x..x€e E & x| sx}.

In particular, increasing (decreasing) s were studied and one remarked that
decreasing selfmappings d of (E, <) behave otherwise than the increasing ones.
On the other hand, any d has a peculiar property that E¢, E, are respectively a left
piece of (E, <) and a right piece of (E, £) and that

(1:5) dE‘cE,, dE,cE".

1 :6. The sets (1 : 2)«(1 :4) could be any ordered sets; in particular, (1 :4) could
be any ordered set. As a matter of fact, if (4, B, C) is any 3-un of pairwise disjoint
sets, we could consider: their union E ordered in such a way that A<B and
A|C||B and a function d on E such that d4, dB, dC be singletons in B, 4, C
respectively; then obviously the sets E¢, E, E(d) are A, B, C respectively.

1:7. Sets RyX, R°X (X being ordered) are defined as the set of all initial and
terminal points of X respectively.

1 :8 Lemma: For any decreasing selfmapping d of (E, <) the set I(E; £,d) of
all invariant or fixed points of E satisfies
I(E, £), d=E’nE,

and is an (empty or non empty) antichain in (E, <)
The cardinal number of I could be any given power m.
The proof of the first part of 1:8 is obvious. As to the power of I, let us consider
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for any power m any set M of power m; let M x R :=E, be ordered by < where
for (x, y), (x’. y)€E one defines

(x, )=, yyox=x" y=y"in (R, £),

(x, YII(x, y)y>x#x', and

dx, y):=(x, —y);
then (E, £) is degenerate (i.e. every subcone is a chain) and I((E, <), d)={(x,
0)..xe M} is of power m (s.n. 2.25 in Kurepa 1975:2).

1:9. What more natural than to consider a special case of (1:5) in which <
stands for =? Doing so, we are going to prove the following.

2. Theorem. For any non-empty ordered set (E, <) and any decreasing
selfmapping d in (E, <), such that

(PS) dE‘=E, dE,=E‘ and
2:1) E4s#v (=vacuous set)
the following statements are pairwise equivalent:
(F) d has a unique fixed point in E, i.e. the equality dx=x has a unique solution in
E: the set I(E, <), d) is a singleton;
(S=i) ‘S: =sup E? and i:=inf E, exist in (E, <) and are equal;
(S) S:=sup E? exists in (E, <) and satisfies S=dS; thus SeE,;
(i) i:=inf E; exists in (E, <) and satisfies i<di, thus i E°.

3. Proof.

3:1. F=(S=i). As a matter of fact, by hypothesis, the set I is a singleton
{b}; by 1:8 the point b is the unique point of E which belongs to E? and E,. Since
E? is a left piece and E, is a right piece of (E, <) such that E‘<E,, one has
necessarily b=S and b=i, thus (S=i) is holding.

3:2. (S=i)=(S). Since (S=i) says that S, i exist and since dE‘=E, one has
in particular dS=i; this equality joint to the assumption S=i implies
dS=S, dS<S.

3:3. (S)=>(i) because by hypothesis S exists and belongs to E, the operation
d carries E? onto E, and necessarily dS=i and di=S because dE,=E°.

3:4. ()=F. Since E, is a proper right piece of (E, <) and by hypothesis the
infimum i:=inf E, exists and is in E? as a maximum; consequently S=i. This
relation jointly with di=S implies di=i; thus I is non empty; I is the singleton
because i is the maximum of E? and because E‘>].

The previous conclusions 3:1-3:4 finish the proof of Theorem 2.

4. An example. Let us consider a chain, say L:=R[0, 1] — real numbers
=0 and =<1; let d be defined by d [0, 1/2]={2/3} and d(1/2, 1]={1/3}; then
L‘=[0, 1/2], L,=(1/2, 1], S=1/2=1/2, dL*={1/3}, dL,={2/3}, I=v. Conse-
quently, Theorem 2 need not hold for decreasing mappings which do not
satisfy (PS).

5. Remark on the conditions (2:1). For any selfmapping s of (E, <)
into itself the conditions

(PS) SE*=E, sE,=F°
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mean that s is surjective in the set E*U E, which is the complement of the set E(s)
defined in (1, 4); thus (PS) means that s is partially surjective in (E, =).

6. If (E, <) is a chain (L, <), then the conditions (PS) represent a particular
surjection of L, and LY|L, is a cut of (L, =). One proves readily that every
surjection s of (L, <) carries L*® onto L as well as L, onto L°. Therefore, if we
specify (E, <)=(L, =), Theorem 2 becomes

6:1. Theorem. For any gapless (=conditionally complete) ordered chain
(L, <)+#v and any decreasing selfsurjection d on L the following are equivalent:
6:2 d has a unique fixed point in L;
6:3 S and i exist and are equal;
6:4 S exists and is =dS
6:5 i exists and is < di (as to (6:2)«(6:3), v. also Diaconescu 1986).

7. PScondition (partial surjection condition) versus de-
creasing mapping.

7:1. For a selfmapping s : (E,<)— E we considered in n° 2 the conditions (PS)
PS sE*=E, sE;=E*; they are called partial surjection conditions
because they express the surjectivity of s in the set E°UE,

7 :2. Moreover, PS-conditions express a partial decreasing phenomenon
because if xe E then

x < sx implies sx=s?x (i.e. if x€ E* then fx€E)),
s = sx implies sx <s?x (i.e. if xe E, then fxe€E°).

In other words, PS expresses that s is decreasing for every s-tied pair x, sx€E.

7-3. On the other hand, one knows that for every decreasing automapping d
of (E, <) the sets E%, E, are respectively a proper left and right piece of (E, <).
How to get this fact starting with any PS-selfmapping s on (E, =)? In other words
how to express that E° is a left piece, i.e. that

a<beE‘=acE’ i.e. that

(7:4) a<b<sb=>a<sa? Where to set sa? It is sufficient to prolonge the
3-term-relation (7:4) by < sa; one gets

(7:5) a<b<sb<sa, i.e. a<sa thus aeE’ (procedure of right extending of
a<b<sb by =<sa).
Analogously, for E, to express that E_ is a right piece of (E, <): If a€E, and a<b
then beE, i.e. if

(7:6) fa<a=<b, then the simple procedure is to set down the missing fb by
intercalation of fb isotonily between a and b in (7:5); one gets

(7:7) fa<a<fb<b, thus in particular fb<b, i.e. beE, By simple
extensions (7 : 5) (on setting sa) and (7 : 7) (on setting sb), s becomes decreasing in
E* and in E_

(7 : 8)If moreover E*<E, (such a situation occurs for every ordered chain
(E, <)), then by the above extensions (7:5) and

(7 :7)the given PS-mapping s becomes a decreasing surjection on the
complement of the set E(s) of all points xe E such that x||sx.
No rules are known on the behaviour of the set E(s).
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