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An algorithm is presented for finding all the sign changes of the real-valued quasi-polynomial

f(t)= = c, exp(4.¢) in a given interval, where c, and 4, are complex numbers. Such a question arises in

k=1 .
numerical solving a linear time-optimal control problem when determining switches of controls.
Particular attention is paid to the localization of the desired points. The idea of the algorithm is based
on the fact that by means of factorization.applied to the appropriate differential operator the problem
can be reduced to a problem of finding the zeros of quasi-polynomials with smaller number of
summands. :

1. We consider a linear time-optimal control problem in the following form:
to synthesize a control u=u(t)e U, which steers in a minimal time ¢, the solution

of the equation
X(t)= Ax(t)+ Bu(t). x(0)=x4(#0)
to the origin: x(t,)=0. Here U is a parallelepiped in R’, defined by the inequalities
0>)a,SU'SB; (>0), i=1, 2,..., r;

A and B are constant nxn and nxr matrices, respectively; x(t) is an
n-dimensional vector-valued function. It is assumed that the normality condition
holds [1] and x, belongs to the controllable set (which is automatically fulfilled in
case of a stable A). It is well-known that under these conditions the desired
optimal control exists, that it is unique (to within a set of measure zero) and is
represented by piecewise constant function, whose values coincide with the
vertices of U. The points ¢ in which u(t) has jumps are called switches. According
to the Pontryagin Maximum Principle u(f) is uniquely determined by the
condition

Y(t)Bu(t)=max y(t)Bu,
ue U

where Y(t) is the solution of the adjoint system Y= —A*y with some initial
condition ¥(0)=y,. The value of Y, is a priori unknown and this is the main
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source of computing difficulties. Therefore, one has to use rather complicated
constructions in order to find u(z). The majority of them are connected with
repeatedly synthesizing optimal controls for initial points different from x,. It is
clear that the use of such methods requires to find control switches many times.
Thus, it is important to have effective computer procedure available for searching
these points.

Every switch is characterized by a sign-change of the components of the
vector-valued function

Y(OB=(1(). f2(0)..... [(®)

Each of these components is obviously a polynomial of the following kind

(1) f)= % cyt)exp(iy).
k=1

where 4,, 4,,..., 4,, (n"<n) are distinct eigenvalues of matrix — 4* (or, which is
the same, of —A) and c,(t), ¢c,(¢)...., ¢,, (t) are polynomials of ¢t.

For the sake of presentation simplicity in the sequel we restrict ourselves to
the case of simple eigenvalues; by this the conceptual aspect does not change,
while presentation becomes less cumbersome. In the case that interests us f(t)
obtains the form

(2) f(o= i ¢, exp (4, t).

k=1

There may be complex numbers among ¢,, 4, (k=1, 2,..., n), but it is clear that
the quasi-polynomial is real-valued (complex summands participate in (2) as
conjugate pairs).

In accordance with the nature of the time-optimal control problem we are
interested only in values ¢>0. Without loss of generality we assume each
coefficient ¢, in (2) being different from zero, since zero members can be omitted
(changing appropriately the enumeration). Besides, we suppose that n>3, as for
n=2 the problem becomes trivial.

Taking into account the existence of well-known and fairly quick procedures
for determination of localized zeros of smooth function (for example, bisection
method, chord method, etc.), it is easy to understand that the problem actually
reduces to the problem of localizing the zeros of f(t). To localize the zero t, of the
function f(z) means to find an interval (tp, t3), at the ends of which f(¢) has different
signs and inside it vanishes at the point ¢, only. It is clear that the problem of
localization makes sense only for odd-multiple zeros.

Note that there are no effective methods for localizing the zeros of an
arbitrary continuous function f. Clearly, if it is required to find the zeros of a
function f in some interval [a, b](supposing that their number is finite), it is
possible to consecutively calculate the values of f at the points a, a+h, a+2h,...,
b, where h=(b—a)/m, m>1 and watch for sign changes of f. For small h this
method demands too much computing time; as for not too small h, there appear
an actual possibility to omit (an even number) sign changes of f. Thus, additional
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assumptions for the function are needed. One of the possible ways here is to use
estimates for the derivatives of f. We cite a simplest example for such kind of “fight
with zeros omission”. Let f(z,)f(¢,)>0 and

1f(2,) +1(25)]

t, <t<t,).
LI (<i<n)

3) If @l <M=

Then f has no zeros between ¢, and ¢,. In fact, it may be assumed that f(¢;)>0,
i=1, 2. Let

* =f(‘1)t2 +£(t,)t,
Se)+f(t) -

If f has a zero t, in (t,, t*], then

=S, ) _fE) ) _

to—t, t*—t,  t,—t,

’

which contradicts (3). Analogously one can eliminate the possibility for a zero
to€[t*, t,). If (3) is not fulfilled, we bisect (¢,, t,) and so on until (3) is fulfilled in all
obtained intervals (or we come to. an interval with negligibly small length). The
given trivial way is general, but it requires estimation for f (naturally most precise
possible). We also note without going into details that in order to estimate the
computatignal complexity of the given method it will be necessary in particular to
estimate |f| too.

The method, proposed below, takes into account the characteristics of
quasi-polynomials and thus is ‘less general. Here a problem of estimating
derivatives does not arise (such estimates are not required) or of choosing step
length. However, it is not excluded that in some cases (especially for great n) the
trivial method which uses some kind of rough estimates for |f| turns out to be
practically more effective.

Naturally, if f belongs to a specific class of functions some new possibilities
may be induced. The classical case when fis a polynomial has been investigated in
an exhaustive way. But already for quasi-polynomials the problem becomes more
difficult and it has been examined apparently far less.

2. We begin with a simpler case, when 4,, 4,,..., 4, (hence c,, c,,..., c,) are
real and
4) A< <...<Z,

It is known that the quasi-polynomial (2) has at most n—1 zeros. A more precise
estimate can be obtained in a following way. According to Descartes rule [3]
applied to the system of functions

) exp(4,t). exp(4,t)..... exp(4,t)

the number of zeros (and hence the number of sign changes) of the
quasi-polynomial (2) does not exceed the number of sign changes in the sequence
of coefficients ¢,, ¢,,..., Cp.
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We assume that all coefficients ¢, have not the same signs simultaneously
(otherwise f(t) would have no zeros at all) and that c,>0 (otherwise we can go
over from f to —f).

We are interested in the zeros, which are in the interval .(0, o). We can,
however, deal with the finite interval (0, t.,,), where ¢, is some-upper bound for
zeros of f. For example, assume

toa=(4,—max 4,) "' In (| K |max|c|/c,).
ke K ke K

where K ={k : ¢, <0}, | K| is the number of elements of K. In order to justify this
choice we show that f(t)>0 for t=t_,, Indeed, we have

S Z c,exp(4t)+ I c,exp(4yt)

ke K

2 ¢, exp(4,t) —| K |max|c, exp(4,0)|
ke K

= c,exp(4,t)—| K|max|c,|exp(max 4,t).
ke K ke K

A direct calculation shows that the right-hand side has an unique zero t=1¢,,,
Since for t>1,,, it is evidently positive, the same holds for f(r) as well. Further,
f(tna)>0 as far as n=3. If ¢, <0, it is obvious that f(¢) has no positive zeros.
That is why later on we consider that ¢, >0.

Thus, all zeros of f(t) we are interested in lie in the interval (0, t,,,,,). Our aim is
to find the localization intervals for each of these zeros (more precisely, for each
sign-change point of f) separately.

Let p (1<p<n) be the minimal index such that there is exactly one sign
change in the sequence c,, Cp+1,..., C, (since not each ¢, has one and the same
sign, such a p obviously exists). Let us consider the following function system

6 fO=£0O. f@)..... [,0).

where the functions fy(k=2, 3,..., p) are defined as follows:

_ d
) Si= d—j:;;—l — Ax—1Si—1 = exp(A- 1‘)2;(0"13(—1&- 1) fi-1)

If we introduce
vij=(A4;—24,)(A4;—43)...(4—A-1), k=2,... p; j=k,...,n
the system (6) can be written in the form
f1(t)=c, exp(d,t)+c,exp(d,t)+ ... +c,exp(4,t)
fz(-t)=c2 v226Xp(A,8)+c3vazexp(Ast) + ... +c,v2.€xp(4,1)

f,,(i)=c,v,,,exp().pt) +Cpr1Vpp+18XP(Ap41t)+ ... + C,Vpn€XP(4,0).
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Since, by virtue of (4), each v,;>0, in accordance to Descartes rule the number of
zeros of each functionfk is not greater than the number of sign changes in the
sequence ¢y, Cx+ 1, . Therefore, f, has no more than one zero. As we consider
only the zeros whlch he in the interval (0, t,,.,)> we have to compute the values of

£,(t) at the ends of this interval. If f,(0)f,(t,,,,) =0, then f, has no zeros in (0, t,m) If
jP (0)fp(f max) <O, then (0, 2,,,,) is a localization interval for the unique zero tf of the
function f,- It can be found by one of the above mentioned classical procedures for

determination of a localized zero.

The subsequent part of the algorithm consists of consequently finding the
sign-change pomts of functions f,, 1 2, etc. up to f;. Suppose we have already
obtained all the sign changes %, t%,..., tk, of the function f (2<k<p) We show
that it allows to localize and therefore to calculate, all sign changes of the
function f;_,. Consider the intervals

(8] ©, &), (&%, B)...., (5, tosd
(If mk=0 this system reduces to the unique interval (0, t,,).) In each of these

d . .
intervals f;, and hence Z(exp(—lk—lt)ﬂ—l(t))’ does not change its sign. Thus,

exp(—Ax—11)fx—1(t) is strongly monotonic. Therefore, this function, just as the
function f; _, has no more than one zero in each interval from (8). We compute
the values

) Si210)  Llg@h)-co Az (88, fi= 1(tas):

The number of odd-multiple zeros of f; —, is equal to the number of sign changes
in the sequence (9). In addition, each interval (¢4, t§.,), 0<j<mk, is a localization
interval for one of these zeros if and only if

ﬂ—n(‘})ﬁz—n(tf+1)<0 (t§=0, thi+1="1lma)-

It is trivial to prove this assertion if there are no zeros in the sequence 9).
However, it holds also in case there are such zeros. In fact, let f,—(t%)=0,
0=<j<mk+ 1. In the first place, t% cannot be a sign change- pomt of function f; —,,
which we are interested in. Indeed, for 1 <j<mk the pomt 1 bemg odd-multiple
zero of f,, could be only even-multiple zero of fy _, ; as to t¥ and tX, . ,, they do not
belong to the considered interval (0, z,,,) at all. Secondly, the adjacent intervals
(r5- %), (. tj+,) cannot contain odd-multiple zeros of f,_,, since
exp(—/,‘_,t)f,‘_,(t) is monotonic in both. intervals and vanishes at 5.

After we have obtained localization intervals for all the sign-change points of
function fy—, in (0, t..), we apply again one of the known methods for
determination of these points. Next we analogously obtain sign-change points of
fx— > and so on until coming to f, =f. Thus, the algorithm can be characterized as
an alternation of localization processes with classical procedures for computing
localized zeros.

3. Before we go on to consider the case when eigenvalues may be not real, we
shall make some remarks.
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Above it was implicitly assumed that all computations (determination of
localized zeros, calculation of f;(t) values, etc.) are exact. In such an idealized
situation the presented algorithm finds, in fact, all zeros with regard to their
multiplicity. But it is clear that, as a rule, there are errors in real computations. In
this connection an even-multiple zero.can, depending on the case, either
“disappear” or “provide” two very close sign changes. Inversely, it is possible as
well to loose a pair of actual close-to-each-other sign changes. We note, however,
that appearance or disappearance of such pairs is, in some sense, an unusual
event. Moreover, as it is easy to see, such effects do not have noticeable influence
on the quality of the control.

The computer realization of the algorithm just presented does not cause
peculiar difficulties, although it is appreciably more complicated than trivially
calculating values of f at the points h, 2h,..., where h«1. The computing
complexity of the latter method is equal to Cnt,,h~"', where C is a constant. The
computing complexity of the algorithm presented is a sum of two components.
The first component does not depend on the desired precision h and, as it is easy
to calculate, is not greater than C,n® (here the following actions are contained:
constructing f, functions, computing f;_;-values at the sign-change points of f,.
defining the number of sign changes in corresponding sequences). The second
component is connected with the computing complexity D of the classical
procedure for determination (to within h) a localized zero and the number of turns
to this procedure, which as it is easy to check, does not surpass C ,n? (C, and
C, are constants). In particular, if the bisection method is used, then
D<log, Ct,..h~'). Hence, the total computing complexity of the algorithm is not
greater than C,n>+ C,n?D. Thus, for small 4 and not large n (i.e. in a situation
typical for optimal control problems) our algorithm requires considerably less
computing time. Clearly, at the expense of increasing h, it is possible to shorten
the time used for calculating values f(h), f(2h),..., but in this way one may omit a
real sign change of f (which, as it has been noted, cannot occur with our
algorithm).

Principally new difficulties do not arise in case the matrix A has multiple
(real) eigenvalues. It is true that then the presentation becomes more
cumbersome — constants ¢, in (2) are exchanged by polynomials of ¢, Descartes
system (5) is more complicated, expression for ¢, may need modification Gf 4,
is a multiple eigenvalue). But the basic idea — the one of constructing the function
sequence (6) by formula (7), applying Descartes rule and arguments implied by
monotonicity for localizing zeros of f; — remains unchanged.

Unlike presence of multiple eigenvalues, presence of complex eigenvalues
considerably affects the algorithm structure. We go on to consider this case.

4. One of the basic new aspects is that the number of zeros of fin (0, c0) can
be infinite and therefore a question about their upper bound, generally speaking,
does not make sense.

Note, however, that in case one of the real eigenvalues — say 4, — is greater
than the real parts of the others, the number of zeros of fin (0, co) is finite. As an
upper bound for these zeros we can take the value

tmax= (A4, —max Re 4,) "' In(| K|max|c,|/c,),
ke K ke K
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where K ={k : ¢,c, <0 or Im4, #0]. The proof of this assertion is similar to the one
given for real 4,.

Returning to the time-optimal control problem we note that we need control
switches only for some interval (0, T'). Hence, independently of 4, nature, the
question is always about determining. finite number of f zeros.

For the sake of presentation clarity we begin with the case when there is only
one pair i, , =p+in (n#0) of complex conjugate eigenvalues, while 4,, 4,,..., 4,
are real and, for notational simplicity, distinct. We go over from f{(t) to the
quasi-polynomial g(t)=exp(—pt)f(t), which has the same sign as f(t) and we
choose nt as a new independent variable. In this way the problem reduces to a
problem of determining sign changes of the quasi-polynomial

g(t)=c,sint+c,cost+ I c, exp(d,t).
k=3

where 6, =(4,—p)/n, k=3, 4,..., n.
Consider the function

d2 n
(10) 9:(0)=(z+Dg= X (9% + 1) exp(J,).

k=3

Since in the quasi-polynomial (10) every J, (as well as c,) is real, we can use
the algorithm presented above for determining all its sign changes (their number is
obviously not greater than n—3) in (0, o).

We show now, how knowing all the sign changes of g,, one can localize and
obtain the sign changes of g. The specifity of complex eigenvalues implies, in
particular, that we have to consider separately the intervals (0, n), (, 2n),... The

choice of these intervals is in connection with the fact, that in each of them a real
2

factorization of the operator % +1 can be performed:

d2

1 d 1
T+ 1)g(t)= — —(sin?¢ ‘% (=—g®)).

sint dt sint

(

(11)
jea<t<(i+1)=m, j=0, 1,...

(The concrete kind of a smooth function g is of no importance here.) This is a
particular case of a well-known Polya theorem, which has been considered by
Poincare [3]. Since all the construction for the intervals (0, n), (%, 2x),... are
similar, it is sufficient to examine one of them, for example, (0, =).

Let t}, t3,..., tl, (m=0) be sign-change points of the function g, in (0, 7). By
virtue of the factorization (11) the number of sign changes of the function g in the
interval (0, ) is not greater than m+2. We go to localize these points. Assume

_dg . _a,d 1
(12) g,(t)= i sint+g(t)cost=sin tdt(simg(t)).
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By virtue of (10) and (11) -‘%gtl =sintg,(t). From here it can be deduced that the

function g, is strongly monotonic in each of the intervals
(65, 1), (1. t3)...c. (tm=y. tm). (tm. tmer) (83=0, ty.y=m)

since in each of them g, does not change its sign (to within even-multiple zeros).
By computing the values

92(t3). go(t1)..... g2(tn). g2(th+1)

and fixing the sign changes in this sequence we find localization intervals for all
the sign-change points of g, in (0, =), as it has been done earlier. By applying again
some classical procedures for determining localized zeros we obtain the
sign-change points of g,; let us denote them by ¢}, t3...., t7 (0Sj<m+1). By
virtue of (12) the intervals

(]3) (t%’ t%)- (tfn t%)r'--v (t}' t}+l) (t(2)=0- tlz+l=n)

y()

are intervals of strong monotonicity for the funcuon = and, therefore, in each of

them g has not more than one sign change. In order to select the mtervals, which
contain a sign-change point we compute the values

(14) g(td). g(t3)..... g(ti+ 1)

Let us consider at first the case g(t3)g(t7+,) #0. We can use the previous rule:
(t2. t2+,). 0<k<j, is a localization interval for a sign-change point of the function
g if and only if g(t )g(tH 1)<0 The proof for all intervals (13) except the extreme
intervals (t3, t}) and (t}. t}+,) is similar to the one given above for such a
9@
sint

situation. As to the extreme intervals, the monotonic function : has a

y()

singularity in the points t and t7,,. Note, however, that the sign of _—r m the

right half-neighbourhood of t3 (left half-neighbourhood of t2, ,) comcldes wnh the
sign of g(t3) (g(t}+1)).

In the case g(t})g(t}+ ) =0 we can act in the following way. If g(t3)=0, one is
to replace g(t3) in (14) by g (¢t3); if g(¢?+,)=0, one is to change this value by
—g (t+,). We clarify this, for example, for t3(=0). It is easy to see, that because of

g(0)=0 the value g (0) is equal, in fact, to the value of g( ) (predetermmed up to

continuity) at t=0. Hence, if g (0)g(t?) <O then (0, t2?) is a locahzauon interval for
some sign-change point of g and if § (0)g(¢3)=0 then (0, t?) does not contain a
sign-change point of g.

After we have found all localization intervals for sign-change points of g, we
again use some classical procedure to determine them. As a result we have all
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sign-change points of g in (0, #) and we find out the sign of g between these points.
Next, the same is repeated for the interval (n, 27) and so on. There is no problem
with the extreme points t=kmn, k=1, 2,..., since on passing we clarify the sign of g
at the both sides of these points. The process is going on until we obtain all sign
change points of g, i.e. all switches of the control u(t), in the interval of interest
(0, T) (naturally with regard to their upper bound ¢_,,, if such exists).

Up to now we spoke about the case of one pair of complex conjugate
eigenvalues. In order to cover the general case we can use the same technique for
“decreasing” the number of complex 4,. Namely, suppose there already exists an
algorithm for determining the sign-change points of a quasi-polynomial with
m—1 pairs of complex 4, in an arbitrary interval (0, T). We are to obtain all
sign-change points of a quasi-polynomial (2), lying in (0, T), with m pairs of
complex 4,. Let 4, , =p+in (n#0). By coming, as above, to the quasi-polynomial
g(t)=exp(—pt)f(t) and choosing it as a new independent variable we obtain an
equation

d?
(7z + Dg=9.0).

where g, is a quasi-polynomial with m—1 pairs of complex 4,. By assumption we
can obtain all sign-change points of g, in (0, T). After that the search for
sign-change points of g can be performed exactly in the same way as described
above.

As a pair 4,, 4, any complex conjugate eigenvalue pair could be chosen. For
practical convenience it is advisable to chose the pair with the greatest real part.
The purpose of this recommendation originates from the desire to come, as quick
as possible, to a quasi-polynomial whose greatest Re/, is realized for some real 4,.
As it was already noted, such a quasi-polynomial has a finite number of zeros in
(0, ©0) and they are not greater than ¢, mentioned above. It is clear, however,
that such a choice is of no use if all real eigenvalues lie “on the left” of all complex
ones.

The computational complexity depends not only on desired precision, length
of the considered interval and n, but as well on the number of complex 4, and
values of ImA,. Usually, great |Imi,| correspond to “quickly oscillating”
quasi-polynomials for which the problem is evidently more complicated. Without
going into details of determining the complexity estimate, we just note that the
algorithm presented gains an advantage to a considerable extent when high
precision is required.

As far as the linear time-optimal control problem is concerned there is no
significant difference between stationary and non-stationary (when A=A(t),
B=B(t)) cases. A part of the constructions described above can be extended to a
non-stationary case too. However, the practical value of such extensions is
obviously insignificant. The efficiency of the algorithm proposed is determined
first of all by the fact that we have an explicit analytic expressions for the arising
functions (quasi-polynomials). For the non-stationary case, as it is well-known,
such a situation is not characteristic.
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