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A Topological Dehn’s Lemma
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This paper is devoted to an extension of the classical Dehn’s lemma [6]
to continuous (hence not necessarily PL) Dehn maps of disks into 3-manifolds.
Precisely speaking, we (almost) prove the topological version of D. W. Hen-
derson’s (PL) extension of the classical Dehn’s lemma [4].

Unless stated otherwise all maps are only assumed to be continuous. A map
f:D—X of a disk (resp. disk-with-holes) D into a space XisaDehn disk (resp.
Dehn disk-with-holes) if S,ndD=Q, where S,=cl {xeD|f "' f(x)#x} is
the singular set of f. Let Z,=f(S,).

Theorem. (TOPOLOGICAL DEHN'S LEMMA). Suppose f :D*oM3 s
a Dehn disk in a 3-manifold with boundary M?>. Then for every neighborhood
Uc M3 of £, there is an embedding F :D*—~M?* such that F|0D*=f|0D* and
F(D*)—U=f(D*-U.

Corollary. (BING’S EXTENSION OF DEHN'’S LEMMA [3]). Suppose
f:D*-M? is a Dehn disk in a 3-manifold with boundary M>. Then for every
neighborhood U = M? of f (int D?) there is an embedding F : D*>— f(D)L U such that
Flint D? is locally PL.

Proof. Follows by Theorem and [1].

Proof of the Theorem. We first consider the case when f(D) < int M.
Here is an outline of the proof: Put S, inside pairwise disjoint PL disks with holes
Cyr..., Cycf~1(U). Let C=(J~,C,. Assume that on some neighborhood of 9C,
f is a locally PL embedding.

Step 1. Consider the surface H=f(D-int C). Use [1] to make H PL.

Step 2. Consider the singular surface L= f(C). Use [7] to make L polyhedral.

Step 3. Now HuUL is a desired PL Dehn disk. Apply [4] to get an embedded
disk T< M.

Step 4. Replace the portions of T which lie outside U by corresponding
pieces of H. (See Figure 1))

In general, the curves from f(9C) are going to be “wildly” embedded in M so
additional care must be taken to improve f near dC. This is achieved by using four
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Fig. 1
concentric families of pairwise disjoint PL disks with holes rather than just one
such family (our C).

Now, the details. Let U’=f~1(U). By [3; Theorem (4.8.3)], there exist families
{A9|15i<1t}, 15j<4, of pairwise disjoint PL disks with holes in U’ such that:
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(1) for each i, j, A”cint4Y*"; and
@) S,cintB,;

where B;=(Ji-, AY. Let k=1, 2. By (1) and (2), f|(D-int Bz,‘_,)‘is an erpbedding
hence f(D-int Bz,‘-:) is closed in M thus V,=U —f(D-int B;_,) is open in M and
V,cV,cU. Let V;=f"'(V,). Then:

(3) S,=VicintB,; and
(4) B, V,cintB,.
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Fig. 4

Let KcLc=D—U' be PL annuli such that dD=8LNJK. (See Figure 2.

Apply [1] to replace f by a Dehn disk f, :D—-M with the following
properties :

() f,|(D=D,)=fI(D—D,);

(6) f,|D, is locally PL; and

(7)SI‘ = Sf’
where D; =int(B,— B,). Apply [1] again to get a Dehn disk f, : D—M such that:

(8) f2|(D-int L)=f, |(D-int L);

(9) f>lint L is locally PL; and

(10) S, =S,..

Remark. We could have gotten the map f, from fin just one step rather
than going via f,. However, we shall need f, in assembling the final map F (See
Figure 4.)

Another application of [1] yields a Dehn disk f; : D—M such that:

(11) £31D;, = £4|D; 5

(12) f51(D—D,) is locally PL; and

(13) §,.=S,.;
where D,=KUBj;.

Remark. If for some je {1, 2, 3, 4} the simple closed curves f(dB;) = M and
f(@K) = M are nicely embedded in M we can skip f; and f, and just apply [1] to
f1(D-int B)) to get f;. However, if this isn’t the case then we must get f, and f, first
to make certain that f(0(D—D,)) is nicely embedded in M.

By [7] there is a Dehn disk f, :D—M such that:

(14) f,|(D-int B,)=f5|(D-int B,) ;

(15) f,|(D~(int KuoD)) is PL; and
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--h(dMx[0,1))

apply Theorem ~
for f(D) inside M’

push F’(D) down
to M along the fibers

Fig. §

(16) S;, = V5.
By [4), there is an embedding f5 : D—M such that:
(17) fslint D is locally PL;
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(18) fs|K =/,|K ; and

(19) fs(D)—V, =f4(D)—V,.

In particular, by (4), (5), (8), (11), (14), (18), and (19):

(20) f,(D-int B;) = f5(D) = f4(D) U V,.

Note, however, that in general, f, and f; do not agree pointwisely, not even on
D-int Bj.

We wish to know what regions of D are mapped by f5 onto f,(D-int B;). Let
C=f5'f,(D-int B;). By (20), C is well-defined and non-empty. There exist
pairwise disjoint PL disks with holes {E;|1<i<r} such that

(21) D—intBy=)i=, F. "

By (16), f,(D-int B;) is a collection of disks with holes, namely f,(E;)’s hence by (20)
so is C=Ji=1f5 " f4(E;). Define F:D—M by

fl'(f4|(n—ima))—l'fs(x); xeC-
22 F(x)= s
@2 & {fs(X) . xeD—(int CLAD)

The map F is well-defined: each xe C lies in precisely one disk with holes
f5Y4(E;), so fs(x) lies in f,(E;). Now, by (16), f,|(D—int B,) is an embedding,
therefore f; ! is well-defined over f, (D —int B;). Also, by (8), (11), (14), and (21):

(23) f110B3= f,10B; )
hence for every xe€dC—0aD, f,°(falp—imsy) ' °Sfs(X)=1f1 °(falop) " ° f5(x)
=id° f5(x) = fs(x) so F is well-defined. By (3), (7), and (20)~(23), F is an embedding
and by (5), (8), (11), (14), (19), and (20)-(23), F(D)— U = f(D)—U as desired. (See
Figure 3.) ’

Remark. The disk F (D) is thus obtained from f5(D) by glueing together the
pieces f(D —int CudD) and f,(D—int B;) using the homeomorphism f; ' f5 on
0C—0D. (See Figure 4.) »

It remains to consider the case when f(D)NndM #(@. Attach a collar
C,=0M x[0, 1] to M and extend the neighborhood U over C, in the obvious
way -- let U'=Uu((UndM)x[0, 1]). Let M'=M U, C,. Apply the preceding
case to the 3-manifold M’ to get an embedding F': D—M : such that
F'(D)—U’'=f(D)—U’ and F’'|0D = f|@D. The disk F'(D) may now hit M’'—M so
we wish to push it in M by a nice ambient PL isotopy with support in U’. Note
that by taking a PL collar h: dM x [0, 1]->M of M in M we get a “product
structure” in M’ close to dM, i.e., C, U h(0M x [0, 1]) is PL homeomorphic to
OM x[—1, 1] where we identify M with M x {0}. We can now construct the
desired ambient PL isotopy H, : M’ x [0, 1]-M’ by pushing F’(D) from M'—M
down to M by means of stretching down the fibers of the product oM x[—1, 1].
Finally, let F :D—f(D)uU be given by F=H,F'. (See Figure 5)
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