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§ 1. Introduction

It is the main purpose of this paper to show that an invariant extension
system of a poset could be considered as a completion system of the space by
a topological point of view, and that the whole process is analogous to this one of
the linear topological spaces.

Let (E, £) be an order structure, < the strict relation. Each subset of E can
be considered as a join of directed (right or left) sets, maximal with respect to set
inclusion; this principle is preserved through all the present text.

We restate some definitions.

A f*-cut (cf. [7]) is a couple (4, B) of subsets of E satisfying the following
properties :

a) The subsets 4, B are directed subsets right and left respectively;

b) (V xeA) (V yeB) [x<y];

c) The A and B are maximal with respect to set inclusion;

d) There exist linear subsets 0, = A, b, = B such that 9, is cofinal to A (for
the <) and b, to B (for the =).

The subsets 4, B are called the classes of the f*-cut lower and upper
resp.); if the classes have ends (sup 4 and inf B) the f*-cut is called f*-jump, if
they have not any end it is called f*-ga p. The set of the lower (resp. upper) classes
without ends is symbolized by L~ (E) resp. L *(E)) and the set of f*-gaps by L* (E).

Symbolize :

ly:={xeE:x=sy}, ly:=Iy\{}
lY:=u{ly:yeY}, Y<SE
ME :={ly:yeE} and SE:={|lY:Y<E}
We also define 1y:={xeE :y<x} and in a similar way the 1y and 1Y.
The members of .# E are called the principal ideals, and these of &/ E

the lower ends of E. Directed lower ends are often referred as ideals (see
f.e. [S] and [4]).
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The system of all ideals of E is symbolized by JE.

A standard extension of E is called a system Q with #Ec Q< «E;if
the system is closed (under arbitrary intersections), it is called a standard
complétion of E. Finally an invariant extension is called a functor .#,
assigning to each poset E a standard extension £ E such that for every
isomorphism ¢ : E—»Q, Ye #E implies ¢[Y]e Q.

After a result of M. Erné ([5] Cor.3 and the relations of p.201) every
isomorphism of E into JE is trivial, i.e. it is a composition of automorphisms of
E and of the trivial isomorphism n : E—.# E where y—|y. Thus, if we suppose
that each maximal directed subset is cofinal to a linear subset, we could define the
set & : =EUL(E) as the system JE. On the other hand, the system &~ is
a standard extension system (in fact it is an invariant one) and it coincides with
the standard extension system ! constructed by the strictly monotone chains of
E (see [7], p- 82).

The meaning of the completion in the above consideration is that in a closure
extension system Q, each subset has infimum. We attempt to face the completion
by the aspect of a topology which is generated by the sets of the form | yand 1y
for each point y of the space (Alexandroff topology), and where the increasing sets
(i.e. sets of the form {1Y, Y subset of the space} are used as well as lower ends; we
especially refer to the set E*=EUL (E)UL*(E), the extension system of
f*-cuts of F (cf.[7], def.1).

It is shown that E has a topological embedding into E*, while E is embedded
into another f*-cut extension system, which has a character of completion (§2).
This completion property permits us to generalize two results of Kowalsky. The
last paragraph is devoted to three problems: a problem of the “smallest”
completion, connection and order and a case where linear subsets are cofinal to
directed sets.

For the first problem the solution is strict in the case of MacNeille
completion, while [3] is referred to the second problem in the case of linear space.

§2. The embedding theorem

Let E be an ordered space and E* its extension system of f*-cuts; the
topology we consider here is the Alexandroff one.

Proposition 1. ([7]) The induced topology by E* into E is the initial one and E is
dense in E*.

In fact, the subsets of E* of the form 1y (or | y) have as trace on E, open set.
On the other hand, for each xe E*\E and for each neighbourhood O, of x there
exist a, b in E such that a<x<b.

The extension system of f*-cuts has not f*-gaps. So if £is a functor which to
each ordered space E assigns the above system (i.e. if # E=E¥), then #"E=E.

It is well-known (see f.e [1]) the next compatibility principle of ordered
spaces.

Two subsets 4, B are called order separated if and only if

(VxeA)(VyeB) [x<Zylor (VxeA) (VyeB) [y<x]

where x<y means “x<y or x, y non comparable”.
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A topology is called com patible with the order iff: for each couple a, b of
points, such that there exists a neighbourhood of one, say U(a) of a, which
b doesn’t belong in, there exists neighbourhood V(a) = U(a) of a such that b and
V (a) to be order separated. A space is called O, iff for each couple of points there
exists a neighbourhood of one, order separated from the other. In the same way
are defined the O,, O, spaces.

Proposition 2. The Alexandroff topology is compatible with the order.

Proof. Let V,.be an open neighbourhood of y, x¢V,. There exist finite
numbers e; e;<y as well as finite numbers e; e;>y such ‘that:

V.v=(ﬂT;i)ﬂ(nlgj). I, J finite.
I J

Because x ¢ V,, there exists, say e;«, such that x¢13j-. The set Teoel.ar\léf,
where i*el, is neighbourhood of y and order separated from x.

We say that the space fulfils the f*-cut condition of completion
(f*.c.c.) iff for every f*-cut (4, B) ClAnClIB#Q@, where Cl 4 is the closure of
A (cf. [7], def.2, where the notion is slightly different). This property is an
expression of completion and in the case of linear spaces it holds if for every
subset there exists an end, but it generally fails in a poset.

From now on we suppose that every directed set maximal with respect to set
inclusion is cofinal to a linear subset.

Proposition 3. If the ordered space E endowed by Alexandroff topology is
without f*-jumps, then it can be embedded into an ordered space E, which has not
f*-gaps and (for the same topology) fulfils the (f*.c.c.).

Proof Construction of E. )

To each ecE assigns a set K (e) of couples (4;, B;), subsets of E formed as
follows: let (A;)i; (resp. (B;)jc,) be the analysis of |e (resp. Té) in maximal
directed right (resp. left) subsets.

If card I <1 and card J<1, define K(e)=0Q.

In the other cases, the K (e) is the set of all the couples (4;, B;) for which there
does not exist xe E\{e} between the elements of A4; and B;

Put K(E)= ) K(e). E'=EUK(E).
ec E

Define a relation R on E’ as follows (x, y in E, (4, B;) in K(E), ie {1, 2}).
xRy—x=<y, xR(A,, B))~xeA,, (A,, Bj)Rx<—xeB,

(A,, B,)R(A,, By)—(A,, B,)=(A,. B,) or A,nB,#Q.

The relation R is an order, extension of ‘the initial one.

The demanded set E is the extension system of f*-cuts of E'.

The set E is without f*-gaps.

If an element of the form (4;, B;) € K (e) has an end, then between this end and
the e does not exist any other element, i.e. it is a f*-jump here, absurd. So the E’ is
without f*-jumps too and the E has not f*-gaps as an extension system of f*-cuts.
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The density of E.

First: between two comparable elements of E, there exists an element of E.
In fact, say z<z', z=(A, B)e L*(E’) and z' € E, then z’ € B, next there exists z” € B,
z”" <z and finally there exists z,e E such that z<z"<z,<Z.

Next consider e=(A, B)e izp\E and open V,, eeV,. The V, is the finite
intersection of sets of the form te; and 13j, let 13,- be one of them, then e;e B, and
being B without end, there exists e,€ B, e, <e; and finally xeE, e<ey,<x<e;,
hence xe V..

The E fulfils the (f*.c.c).

Let (4*, B*) be a f*-cut of E and (4’, B'), (A, B) its trace on E’ and E respect.
Because of non-existence of f*-gaps in E, there exists an €nd, say e=min B*.

The A is a directed set. In fact, it is #@ and if x, y in A, there exists ze A*,
x=<z, y=<z the A* is without end hence there exists z,e A, with x=z,,
y=2z4, 2= 2.

Distinguish now two cases.

a) The end e€E. The cougle (A, B) is a f*-cut, because A is right directed
and ee B. Analyse the subset Te into the family (B;);c; of maximal left directed
subsets and remark that a couple of the form (A4, B;) defines a se E’ such that
ClANClIB#Q®, hence ClANCIB#@ and finally élA"‘nCI B*#Q.

b) The element ec E\E. Then e=(4,, B,)e E'\E, (A4,, B, subsets of E) or
e=(A,, B,)e E\E'(A4,, B, subsets of E’). In the former case itis A= A4,, B=B, and
e€ClANCIB, in the last one it is A’=A4,, B'=B,, hence e Cl A’'nCl B’, hence
ClA*NCl1B*#0Q.

Application. If F is a real function defined on E, (4, B) a f*-cut and (A45),,
(Bj); the analysis of the sets | e, Te respectively for an e€ E, it is natural to say that
F'has as. limit the value I with respect to the direction 4; if
and only if: /

(Ve>0) (xoe4,) (Vxed,) [xo<x—|F()—I<é] (lim, F(x)=1I),

and in a same way to get the lim, F(x). Similarly to say that Fhas limit from
the left (resp. right) of [ if limA:F(x)=I (respectively lim,,;F(x)=l) for all
i (resp. j) and for the same L

Proposition 4. If F is a real valued function defined on an ordered space
E without f*-jumps and it has limit with respect to all the directions and from the left
and right of all the elements, then F can be extended to a continuous function over an
extension system of E.

Proof. The extended set SE is constructed as follows: consider
the extension system E of E constructed in the Proposition 3 and
SE=EuUL" (E)yuL™(E), where L™ (E), L*(E) are the lower and upper classes of
the f*-cuts of E without ends.

Define a function F as follows:

If xeE, put F(x)= f(x).

If xeE'\E (E’, as it has been defined in Prop.3), i.e. if xeK(e), put
F(x)=F(e). .

If xe E\E/, i.e. if x=(A’, B')e L*(E’), then the traces A, B of A’, B’ on
E consist the classes of a cut in E and (by hypothesis) there exist lim, F(x) and
lim, F(x), say I~, I* resp. and I~ <I*. Put F(x)=1, such that I” <IZI*.
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If xe LE\E, x is the end of a class, say a lower class A* of a f*-cut of E, the
trace A of it in E is the lower class of a f* — cut of E, so we put F(x)=/, where
I=1im  F(x). _

The function F is an extension of F and it is continuous over SE. In fact, let
ecE and 4, B, the traces on E of two maximal directed subsets of E, which the
le, te are analysed in. We suppose that F(e)=I, lim, F(x)=1", lim, F(x)=I"
and I~ <l<I*. There exist the elements ¢;, e; of LE\E"which are ends in LE of
A, B;, hence F(e)=1", F(e)=I If V, a neighbourhood of I in R, then
F(1&n1é)={1}.

If we apply the last results in the case where E=Q or E=R, we find as E the
set R (in both cases) buu the assigned LE is a set larger than R. A real
non-continuous valued function defined on R (or on Q) having limits (from right
and left) in each point, can be extended in this way. In this case we can study the
extended function as continuous one and then pull back to R to deduce results for
the initial function. This is exactly the point in [2] (p.101).

§3. Some consequences of (f*.c.c.) property

In this paragraph we generalize two results referring by [6] (p. 50) to the case
of a linear space. We again suppose that in the ordered space E each maximal
directed set is cofinal to a linear subset.

For each xe E, put K, =1xuU | x. We say that a subset E° of Eisa branch
of E if and only if:

(1) (VxeE®) [K,< E°] and

(2 (VxeE?) (VyeE®) [K.nK,#]]

Proposition 5. If an ordered space endowed by Alexandroff topology Sulfils the
(f*.c.c.), all its branches are connect subsets. .

Proof. Let E be a branch of the space, non singleton; it is evident that E is
a clopen_subset. Let S#(@ be also a clopen proper subset of E. There exjst peS
and ge E\S comparable elements, say p<gq. Consider the set # of xe E which
satisfy the following: )

“p<x<gq and there exists a chain, subset of S, which has p as the first
element and x as the last one”.

It is X #Q (pe ).

Consider, now, a chain a, = .#, maximal with respect to set inclusion, which
contains p. Then the set A, = |a, is a directed subset cofinal to a, and the lower
class of a f*-cut (4,, B,) of E ; such a f*-cut exists because g is greater than all the
elements of A,.

There exists meCl A, nCIB,, each of the neighbourhoods of m mgets
the subsets S and E\S, hence CISnCI(E\S)#Q, while CISACI(E\S)
=SN(E\S)=Q, which is absurd. '

Remark. If the initial space is itself a branch, it doesn’t need the space to be
endowed by its Alexandroff topology.

We say the filter # is bounded by the elements p and ¢ (where

p<q) if (Tpnlq)e.
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Proposition 6. In an ordered space without f*-jumps, endowed by Alexandroff
topology and which fulfils the (f*.c.c.), each ultrafilter, which has as an element
a chain, maximal with respect to set inclusion and which is bounded by two elements,
converges.

Proof. Let p, g be the two elements of the ultrafilter % and a the chain of the
supposition. Consider the set

M={xea:Txe}.

It is ##D (pe#), while if Tge #, lim%Z={q}. Let Tq¢ ..
Consider the cut (A4, B) of a, where: .

B,={yea:(Vxe.#)[x<y]} and A,={xea:(VyeB,) [x<y]}

and the f*-cut of the space (4, B), where A= | 4, cofinal to .# and B=1 B, cofinal
to aC.#. There exists se Cl A N CIB; for each neighbourhood V; of s there exist
a’e A, and be B, such that Ta’n |b < V, and because the spage has not f*-jumps
and a’ is not an end of A, there exists ae 4, such that Tan |b = V,. On the other
hand, it is Th¢% and Tae%, hence tan |be.

Proposition 7. If each ultrafilter which has a maximal chain as one of its
elements and is bounded by two elements, converges, the space fulfils the (f*.c.c).

Proof. Let (A, B) be a f*-cut, a, (resp. b,) maximal chain cofinal to
A (resp. B), pea, (resp. geb,). Consider the class of subsets:

V={1xna, :x€a,}.

This class constitutes a base of a filter and let % be ultrafilter containing this
filter. It is Tpn|qe% and the maximal chain a, ub,€%. Then the ultrafilter
% converges to a point s whose each neighbourhooci intersects the 4 and B.

§4. Three problems on compatibility and directed-cut systems

In this paragraph we give certain answers to three problems relative to the
theory which has been developed.
Problem 1. The problem is whether there exists the “smallest” extension

system of a poset which fulfils the (f*.c.c). )
It is evident that if (E,, <), (E,, <) are linear order structures, completions of

another linear structure (E, <) fulfiling the properties: they are lattices, the E is
dense into them (by the aspect of the order as well as the interval topology) and
the elements of E,\E and E,\E are not ends of jumps into E, and E, respectively,
then E; and E, are similar.

On the other hand,if E, is the MacNeille’s completion of E and E’ is another
lattice completion of E, then there exists an isotone function f: E,— E’ such that
the sets E, and f(E,) to be similar. It is sufficient to define f as follows:

if xeE, then f(x)=x,

if x=(A, B)e Ey\E, then f(x)=supA in E'.

Now we have the following:

Proposition 8. Let E be an ordered space without f*-jumps and O, for
Alexandroff topology, and E* be its extension system of f*-cuts. If E, is an
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extension system of E endowed by the same topology and moreover (1) it is without
S*-gaps, (2) it is O,, (3) fulfils the (f*.c.c) and (4) CIE=E,, then there exists an
isotone function f:E*—E, such that the sets f(E*) and E* to be similar.

Pro of. Definition of f : for xe€ E, put f(x)=x. Let e=(A4, B)e E*\E. Consider
the subsets of E,:

B'={y :(VxeA)[x<y]} and A'={x :(VyeB)[x<y]}.

Analyse A’, B’ in maximal directed subsets and take as 4,, B, these of them
which porgain A, B respectively. Because of (1) there exists an end of 4, or B,, say
e,=min B,.

' We willl show that the trace of the |e, on E is A and of the Te, is B, hence in
the f*-cut (A4, B) assigns e, uniquely.

First, each neighbourhood of e, intersects A, and B,. In fact, if not, there
exists xeE,; (because of (3)) such <that xeCl4,ClB,. Thus for each
neighbourhood V_ of x there exist x,€A4,, y,eB such that x, <e,y, and
Tx{ n ]y} = V,, which is absurd, because of (2). On the other hand, if there exists
another maximal directed right subset (except of A4,), the set Te, is open without
intersecting A4, absurd. :

Thus |e, = A4, and because of (4) the trace of A, in E is A. Analogously it is
shown that fe, =B, and the trace of it in E is B and our assertion has been
proved.

Put f(e)=e,.

The function f is one-to-one.

The restriction of f in E is the identity map.

Lete, =(A4,. B,). e,=(A4,, B,) be f*-gaps in E, e, #e,. These f*-cuts have one,
at least, of their classes different, say B, # B,. Construct (as in the first part of the
demonstration) f*-cuts in E,(4,, B,). (4. Fzz) with 4;, B;, ie {1, 2}, containing the
A,, B,, respectively. Then there exist é;€ E,\E, ends of one class and such that
é,€ClA,NnCI1B,. If &, =¢&,, then each of them has on its right two maximal directed
subsets, thus the set |e; will be open and non intersecting B;, which is absurd.

Hence €, #¢€,.

The function f preserves the order.

If e=(A, B) is a f*-gap in E, then f(x)=x<f(e)<f(y)=y, for each xe A and
ye B. Thus if one of the two elements of E* is an element of E, the proof is
obvious.

Let, now, e;=(4,, B,), e,=(A,, B,) be f*-gaps in E. If e, <e,, then there
exists xe E, xe B,n A, and f(e,) < f(x)=x < f(e,). On the other rand, if e,. e, are
non comparable and f(e,) < f(e,), then it must exist an element x € E between f(e,)
and f(e,), hence xe B, nA,, which is absurd.

Problem 2. We refer to a connected space and to conditions which define
an order relation in this, compatible with the topology of the space.

Let E be a connected Hausdorff space E; we can prove that if the set
(E x E)\D, where D is the diagonal, ceases to be connect, then the sets E\{x} for all
x, but at most two of them, are non connected.

In fact, let (L, M) an open partition of E x E\D and a, b elements such that
the sets E\{a}, E\{b} to be connected. For each k put:

L,={x€E:(x, kleL}, M,={xe€E :(x. kleM}
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as well as:
Li={ye€E:(k, y)eL}, My={yeE:(k, yyeM}.

The join of the sets {a}x(E\{a}) and (E\{a})x{a})is nonconnected in
E x E\D, so each of them belongs to a different component. On the other hand, if
M¥ =M =@, then (a, b)e L and (b, a)€ L which is absurd. Thus, if M; =0, it is
L% =@ and for any other element ke€E, it is My #Q (because (k, a)e M) and
L, #Q (because (k, b)eL).

It has been proved ([8],p. 43) that if in a connected Hausdorff space there exist
two points such that each third one divides them, then the space is linearly
orderable. Let now E a connected Hausdorff space and a, b, ¢ three elements such
that the subspaces E\{a}, E\{b}, E\{c} are connected while, each of the other
elements divides ¢ and one of a, b, i.e. for each other x the set E\{x} is divided
into an open partition 4, C, with ceC, and one of a or b (or both of them)
belongs to A,. ot

It is easy to see that the sets {x} U A4,, {x} UC, are closed as well as A . and C,
are open. Define an (partial) order in E as follows: put x<y if and only if
a belongs to the sets 4., A, and A, = A, or b belongs to A,, A,and 4, < A,. In the
case where both of a and b belong to the sets 4,, 4, it is proved that 4, = 4, or
- A,c A,. In fact, put A=A ,nA, B=C,nA4,, C=A4,nC, and D=C,nC,. Let
ye C, ; we must prove that B=@. If not, the subset B is open (by definition) and
on the other hand B=[{y} UC,]n[{x} UA,], hence B is closed, which is absurd.

The above relation is an order; the sets of the form |x are the bpen sets A4,
while the sets of the form |x are the closed A, u {x}.

Let now be V, an open neighbourhood of an element a, b¢ V, and ¢, d two
elements belonging to V, such that c<b<d. If a<b, the set V,n|b is open,
contains the element a and it is order separated by b. In the other cases the set
V,\({b) is a neighbourhood of a order separated by b. Thus the topology is
compatible to the defined order.

Problem 3. Is there a cofinal linear subset of any directed set? We give
a relative proposition and the sketch of the proof.

Proposition 9. If the width of each antichain of an order structure is smaller
than a concrete natural number, then there exists a cofinal chain subset for each
directed set.

Proof. Let E be an ordered set whose all the antichains have width smaller
than me N and which has not a cofinal chain as subset. Consider a linear subset I,
of A, maximal with respect to set inclusion. There exist pe A\I, such that p is not
smaller than any element of I, and p is not greater than all the elements of I,
Hence there exists af € I, such that p to be non comparable with all the elements
of I, which are greater than a. (In the next we call parallel the non comparable
elements.)

The generality of the demonstration is preserved if we consider the chain I,
as a sequence (af),.y with the above af as its first element.

Consider now p, e A\I,, which is parallel to all the elements of a final
segment of I, hence there exists a} € E such that ay>p,. a5> a3 and aj is parallel
to all the elements of a final segment of I,. Inductively we construct a sequence
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(@})ie n : =1,, which is a chain and in the same way we construct the chains (I, )ne
which fulfil the following:
(1) The chains I,, ne N are sequences and cofinal subsets to maximal chains
of the set A.
(2) They have not common elements.
(3) If <o, it is af<af for all ie NuU{0}.
(4) For any t€ N, each of af is parallel to all the elements of a final segment of
Io, I,,..., I._,.
(5) For any 1€ N, there are 7 parallel elements.
The above construction leads to the existence of an antichain of width larger
than m.
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