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On Separable Type I C*-Algebras

G. A. Stavrakas

It is well known that if C(X), where X is compact Hausdorfl space, is separable, then, X is
metrisable. We generalize the above result for separable type I C*-algebras. Also, we prove similar
results for C*-algebras, completion of tensor product of type I C*-algebras.

1. Introduction

All the C*-algebras that we are concerned here are of type L. In particular, we
are concerned with the spectrum of separable homogeneous C*-algebras. We
prove (§ 3) that the spectrum of a unital n-homogeneous separable C*-algebra is
compact and nfetrisable as a corrollary of an analogous theorem on (post)
liminal C*-algebras, with inner derivations (Theor. 3.1). We state the
“local” structure of an n-homogeneous C*-algebras, and we prove some sort
of converse of the above theorem ( Corr. 3.7). In the sequel, we generalize the
above result on the C*-algebra, completion of tensor product of n,
m-homogeneous (resp. post liminal) C*-algebras and we prove similar result on
the spectrum of the completion of tensor product of C*-algebras if one of them is
type I (Corr. 3.8, Prop. 3.9).

2. Notations and terminology

For general results on C*-algebras we refer the reader to [4]. We consider

only unital C*-algebras.
A derivation on an algebra E is a linear map 6 : E—E such that

3(xy)=(6x)y +x(3y) (x, y€E).
An element a of some possible larger algebra is said to implement 6 if
ox=ax—xa (x€E)

and § is said to be inner if such an « can be found in E. Otherwise § is said to be
outer ([13)).
A C*-algebra is said to be n-homogeneous iff all its irreducible
“*_representations are of the same finite dimension n.
A C*-algebra is said to be liminal if, for every irreducible representation
n of E and each xeE, m(x) is compact. The C*-algebra E is said to be
ostliminal is every non-zero quotient C*-algebra of E possesses a non-zero
iminal closed two-sided ideal ([4, 4.2.1, 4.3.1]).
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A topological space E is said to be polish, if it is separable and if there exists
a metric on E for which the topology is t and E [1] is complete. A Hausdorff space
E[7] is said to be Lusin (resp. Souslin) if it is the injective continuous (resp.
continuous) image of a polish space. For general results of Analytic Sets see:
[10], [12], [14].

3. On the spectrum

Theorem 3.1. Let E be a unital separable (post) liminal C*-algebra with all
derivations inner. Then, its spectrum E is a compact and metrisable space.

1st proof. Since E is a unital separable (post) liminal C*-algebra with all
derivations to be inner, the pure states set P(E) is w*-compact ([1]), and Ej is
a Lusin space ([12, p.115]). Now, the canonical map h : P(E)—E is continuous
onto (and open) and thus, E is compact and metrisable as the continuous image of
a compact and metrisable set in a Hausdorff ([1, Corr. 5.5, ex. 4.5, Th. 4,2]) space.

2nd proof. Since E is unital and liminal, every irreducible *-representation
is of finite dimension and so E=(JE, n=1, 2,...

Let ® : E—N :n—dimn, ® is continuous on E, (E,) neN are closed and open.
Furthermore, E is quasi-compact ([4, 3.1.8]) and thus (E,) neN are empties except

for finitely many n. By [12, ch.1I] and [4, 3.7.4], | E, is a Souslin space. That is,

k=1

E is compact and metrisable.
3.2. Let E be a C*-algebra with continuous trace ([4, 4.5]). If E is unital

(resp. if it has paracompact spectrum) then every derivation on E is inner (resp. is

determined by a multiplier) [1, Th. 3.2]. For the class of C*-algebras with

continuous trace the theorem 3.1 is a sort of converse.

Corrollary 3.3. Let E be a unital separable n-homogeneous C*-algebra. Then,
its spectrum is compact and metrisable.

Proof: Obvious by [13].

Corrollary 34. Let E be a unital separable type I C*-algebra with all
derivations inner. Then its spectrum is compact and metrisable.

Proof: Obvious by [4, IX, Th. 9.1, (i), (iii)].

i 3.5. Every unital n-homogeneous C*-algebra or a unital separable (post)
liminal C*-algebra with inner derivations is a central C*-algebra. See, for
example, [7, Th. 4.2], [4, 3.1.6, 4.3.7], [3, Corr. of Prop. 3, p.109], [6, p.414].

3.6. If E is a unital n-homogeneous C*-algebra it is known ([2, p. 345], [13,
p. 524]) that to each te T=E there corresponds a closed nbhd V, such that the
algebra E/V, of restrictions to V of the elements of E (E is isometrically
*_jsomorphic to a suitable maximal full algebra of operator fields, [4,
ch. 10]) is isomorphic to C(V, M,)=C(V)® M, where M,, is the full matrix algebra
of nxn matrices.
The “local” structure of E is thus the algebra C(V, M,).

Corrollalg 3.7. Let E be a unital n-homogeneous C*-algebra. We suppose that
its spectrum is metrisable. Then, the “local” structure of E is separable.

Proof. By 3.5 E/V~C(V, M,) where V is a closed nbhd of any element of E.
Now for any cross-norm a we have '
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CV. M,)=C(V)®M,

([8, p-159], [14, p.254]).
Obvious C(V) and M, are separable Banach algebras and by [11, Lem. 2.3, 2.4] we
have the result.

Corrollary 3.8. Let E;, i=1, 2 unital separable n, m-homogeneous (resp.
postliminal) C*-algebras. Then, the spectrum E, ® E, is metrisable and compact,

where o is any C*-crossnorm.

Proof: The completion of the tensor product of two, n, m-homogeneous,
C*-algebras is an nm-homogeneous C*-algebra ([5, Prop. 2]) in respect with any
C*-crossnorm ([8, p.159]). By [11, Lem.2.4, p.28] the nm-homogeneous
C*-algebra is separable and we have the result, for homogeneous C*-algebras.
Also, it is obvious by [15, Th.4, p.26], [16, Th.1] and [8, p. 159] that we have the
result for postliminal algebras.

Proposition 3.9. Let E and F be separable (unital) C*-algebras with Hausdorff
spectra. We suppose that E is of type I. Then, (EQ® F Y\ is a Souslin space.

Proof: It is known that P(E) and P(F) are polish sets as extreme sets of the
corresponding state spaces ([2, 4.1], [12, p.115] see also [10, p. 101]). There is
a canonical map

P(E) x P(F)—»E"x F*=(E ® F)

continuous, onto (and open) ([4, 2.5.4, 3.4.11], [9, p.476], [8, p. 159], [15, Th. 4.1)).
Thus, (E ® F)" is a Souslin space by well known definitions.

Proposition 3.10. Let (E,),.n sequence of separable C*-algebras with Hausdorff
spectra. Then, the strict inductive limit, lim (E,) is a Souslin space.

_—
s

Proof: P(E,), neN are polich sets. The canonical maps
h,:P(E,)—E,

are continuous and onto. We consider the inductive limit of h,

lim h,: lim PE,)— lm E,

By [12, II] lim (E,) is a Souslin space.

Let E Banach *-algebra. The canonical map h : P(E)—E is onto and P(E) is
a subset of unital ball in the dual space of E. E is endowed with the strongest
topology, within h is continuous. If E is a C*-algebra the above topology
coincides with Jacobson topology [4, '§3.4]. '

Proposition 3.11. Let E be Banach algebra with approximate identity, separable
with Hausdorff spectrum. Then E, is a Souslin space.
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Proof: Let h : P(E)— E the canonical map (continuous, onto and open). It is
known,

P(E) = S(E) < E;.

The space E, is a Lusin space, the state space S(E) is a weakly *-compact subset of
E. and thus metrisable and weakly *-compact, that is polish. P(E) is a G,-set of
a polish set and we have obvious that E is Souslin.
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