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Introduction

- Let M be a non compact and connected manifold. A soul of M is any
connected submanifold N of M, such that dim N <dim M and the inclusion
i:N—>M is a homotopy equivalence.

If M is a complete Riemannian manifold, with non negative sectional
curvature, a well-known theorem of J. Cheeger and D. Gromoll states that M has
a compact soul.

In a paper of 1984, ([5]), T. Higa considers non compact, connected
manifolds with a complete connection V, which is supposed symmetric, for
simplicity. He proves that the existence of non constant affine functions implies
the existence of souls. Furthermore, he studies the compactness of such souls, he
constructs a special vector space V(M, V) and proves that, if dim V(M, V)=m>0,
‘then M is diffefomorphic to R™ x M’, where M’ is a totally geodesic submanifold of
M.

In this paper, given a connected manifold M with a symmetric and complete
conne;_:tion V, we study the manifolds T(M), L(M), with respect to the complete
lifts of V.

In § 1, we give the links between the complete and the vertical lifts of several
geometric objects to L(M) and to T(M).

In §2, 3, we determine the spaces of the parallel 1-forms and of the affine
functions on (L(M), V€) and on (T (M), V). We get that the existence of parallel
1-forms on M is a sufficient condition to obtain souls for (T(M), V). Then (see §4),
when it is possible, we find the links between the above souls and the
corresponding souls of (M, V). We point out that such souls are totally geodesic
submanifolds. The aim of Section 5 is to determine the dimension of V(T(M), V¢),
when V is the Levi-Civita connection on M. In this case, the existence of parallel
I-forms on M allows us to state reducibility theorems for T(M), (see §6).

Many of these results are an application of the theorems given by T. Higa in
[5], [6]. Such an application is possible, since V° is complete on T(M). On the other
hand, the connection V€ on L(M) is not complete; so, the same methods fall
for L(M).

*)This paper has been partially supported by M.P.L
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The authors will deal with L(M) and T*(M) in another paper.

In the following, M will denote an n-dimensional connected manifold with
a symmetric and complete connection V; ¢ (M) will be the module of the real
valued C®-differentiable functions on M.

Furthermore, Z(M), A' (M), #5(M) will be, respectively, the #(M)-modules
of the vector fields, of the 1-forms and of the tensor fields of type (r, s) on M.
P!'(M, V) will denote the real vector space consisting of the parallel 1-forms on M,
and A(M, V) the real vector space consisting of the affine functions on M.

Finally, we put a(M, V)=dim A(M, V)—1.

We recall that a function fe ¢ (M) is said to be affine if, for any geodesic
c:I1-M, there exist o, feR such that f(c(t))=at+ B, tel. The symmetry of
V implies the equivalence:

fe A(M, V)—dfe P\(M, V).

Others properties of the affine functions can be found in [5], §1, 2.

§1. Complete and vertical lifts to (M) and links with
the analogous lifts to T (M)

We denote with 7 : T(M)—»M and =, : L(M)—M, respectively, the tangent
bundle and the linear frames bundle over M.

As regards to the complete and the vertical lifts to T'(M), see [13]. In [1], [2],
[3], [10] the lifts of tensor fields and of connections to L (M) have been defined and
studied. We report here some basic definitions and we state other properties.
To avoid confusion, we use the capital letters C, V to indicate the lifts to L (M),
and the small letters ¢, v referred to T(M).

We recall that, if fe #(M), the function f¥=f ° m, is the vertical lift of
f to L (M).

Furthermore, for any a€{l,..., n}, the complete lift of f, of index a, is the
function f$ on L(M) such that

1y fSp X,..... X)=X.) @ Xp.... X,)e L(M).

Given X e Z (M), ae{l,..., n), the vertical lift of X, of index a, is the vector field
X*¥ on L(M) such that

(1.2) XV (f5)=X()"} feSM), Befl...., n}.
The complete lift of X, X€, is defined by

.

(1.3) XS(fS)=X (NS fe #(M), xe{l,....n).
Fixed Te #2(M), s=1, ae{l,..., n}, the complete lift TS of T, with index a, is
defined by

(1.4) TEXS,..., XH)=T(X,,.... X )¢ Xeina X, X (M),

whereas the vertical lift TV is defined by

(1.5) TV =n;(T).
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Note that the complete lifts of fe # (M) and of Te #2(M) to L(M) defined in [1]
can be obtained as follows:

f€= % f€ €= & TE.
a=1 a=1
Given weA'(M), ae{l,..., n}, y(w) is the function on L(M) defined by
(1.6) y(w)(p. X,..... X)=w,(X,) P, Xyo-oo X,) e L(M).

and y(w) is the function on T(M) such that
(1.7) Y w)(p. X)=w,(X) (p. X)e T(M).

Furthermore, the complete lift V€ to L(M) of a connection V on M is obtained by
means of

(1.8) V& (YO)=(V,Y)° X, YeZ (M).
In [10], K. Mok proved that

(1.9) VE(HC)=(VH)¢ He S1(M).
The following result holds.

Proposition 1.1. For each Te #2(M), we have:

(1.10) V(T =(VT)Y

(1.11) VE(TS)=(VT) ae{l,..., n}.
As regards the geodesics of V¢, we have this resuit, (see [10]): a curve ¢ : I— L(M),
ct)y=(c(t). X,()..... X,(1)) is a VC-geodesic iff ¢ is a V-geodesic and each X, is
a Jacobi vector field along c. It follows that V¢ is not complete, while the same is
not true for V¢ on T(M). In fact, the completeness of V¢ would imply the non
existénce of zeros for any Jacobi vector field along any geodesic on M.

Furthermore, the following relations hold for the exterior differentiation
operators:

(1.12) d(f)=fNs. d(f")=@dfN" fe g(M)
(1.13) dwf)=dw). d@")=(dw)" weA'(M)
(1.14) Yadf)=/$ fe S (M)
(1.15) d(7,() = w§ we A (M).

We establish now the links between the lifts to L(M) and to T(M). Let (U. ®) be
a local chart on M, with coordinates {x'} ; the induced coordinates on n; '(U) are
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denoted by {x', yi}, (see [8]). If {e;} is the natural base in U, then the natural base
in nty '(U) is given by {ef, ef¥}. Analogously, the natural base in #~!(U) is given
by {ef, e }. Finally, see [10], [13] for the transformation laws of such bases. Now,
for a fixed &=(¢&l,..., &")eR", we put T : L(M)—T(M) the map such that:

(1.16) t.(p, X,...., X,)=(p, &X,) P X,;,..., X,)eL(M).
It follows:
(1.17) moT,=m,

and, if we denote with {g,,..., g,} the canonical base of R", and put 7,=7,,
we have: *

(1.18) T, =81,
(1.19) T (L(M)) = T'(M)=T(M)—{0}, ae{l,..., n}.

In fact, (1.18) is a consequence of (1.16). To obtain (1.19), fix (p, X) in T'(M) and
complete {X} to a base of T, (M).

Proposition 1.2. Fixed a connection V on M and a€{l,..., n}, the map
7, :(L(M), V)={T(M), V) is totally geodesic.

Let be ¢ :I-L(M), with &(f)=(c(t), X,(t)...., X,(t)) a VC-geodesic. Then,
7,(C() =(c(t). X, (t)), so 7, ° C is a V‘-geodesic (see [13]).

Proposition 1.3. Given 0# ¢ € R”, the map ‘t: : F(T(M))— # (L(M)) satisfies the
foIIowmg relations:

) ()= fe s (M),

i) TE()=ESE fe F(M)

i) 7 (f)=f%

iv) 7; (@) =7,(0) weA'(M)

V) tr is a monomorphism, for each ae{l,..., n}.

From the definitions of the vertical lifts of a function and by means of (1.17)
we have i). Given u=(p, X,,..., X,)eL(M), we have f“°t.(u)=/f(p, {*X,)
=&X, (f) E%f€(u), and so ii). Obviously, ii) implies iii). Furthermore, if ue L(M),
we have 1, (y(w))(u) y(@) (p. X,)=w,(X,)=7,(®)(u), and so iv).

Finally, given a e {1,...,n}, consnder]'ge #(T(M) such that t5(f)=12(g). For
any _(p, Y)eT(M) there exists u= (p Xyissns X,)eL(M) with X,=Y; so
Ty U’)(u)-t,(g)(y):f(p Y)=4g(p. Y), i.e. firan=8,rm)- Since T'(M) is dense in
T(M) we get f=4g.

Proposition 1.4. For any 0#¢eR", ueL(M), the map (T.'C)." : T, (L(M))
- ,{M(T(M)) satisfies the following relations :

1) (T, (XV)= C’X,d(,,, ae{l,..., n}, XeZ (M)

ii) (Tg) (X9)= Xrg(u)

ii1) (rd),u is an epimorphism.
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In particular, we have

iv) (t,,),u(XfV)=X§ﬂ(.,, pel{l...., n}, XeZ(M)

V) (tp), (X3)=0 akp

vi) (r,,)‘u(Xf)= ip(u)
i ae/} 1direct :l:lofnputation gives i), ii), and then iv), v), vi). For iii), we have, for any
B T=F § [ }:

(¢ ):"((ei ) =(e; )gg(u) and (Tg)."((ei)ﬁv) = éa(ei):,{(u)
Therefore, fixed a€{l,..., n}, such that £*#0, it is easy to show that

{(el-)ic(,,,, 5‘(e,.);’¢(,,,} is a base of T,{(“,(T(M)).

Proposition 1.5. For any 0#&eR", the map ‘t: AY(T(M))—- A (L(M))
satisfies the following relations :

i) 1t (@)=0" weA'(M)

ii) 7F () =&

iii) t; is a monomorphism, for any Be{l,....n}.

A direct computation and the Proposition 1.4 imply i) and ii). Suppose, now,
r;(cb)=0, ®eA(T(M)). For any ie T'(M), by (1.19), we have @t =1,4(u), ue L(M).
Then; for each X e Z (M),

Bo(X7) =Dy (1p),, (X $)=(130),(X5)=0,

and so @ ru,=0; hence, by continuity, »=0.
Finally, the following result holds.

Proposition 1.6. Let V be a connection on M. For 0#%¢€ R" and w e A'(T(M)),
we have : 13 (V)= V(17 (w)).

§2. The space A(L(M), V°).

At first, we study the space P'(L(M), V°).

Proposition 2.1. Fixed weA' (M), the following conditions are equivalent :

i) we P'(M, V)

ii) " e PY(L(M), V)

iii) w€ePY(L(M), V), for any a€e{l,..., n}

iv) there exists a€{l,..., n} such that wfeP'(L(M), VO).

i) « ii) and i)=-iii) follow from the Proposition 1.1;

iii) =>iv) is obvious. Finally, suppose VE(w€)=0, for some ae{l,..., n}.
Then, for any X, YeZ (M), we have:

0=(Vo)S(XC, Y¥)=((Vo)(X, Y))V so (Vo)(X, Y)=0 and weP'(M, V).
Proposition 2.2. For any we PY(L(M), VC) there exist, uniquely determined,

\-forms m, my,..., n,€ P'(M, V) such that o=n"+ X (7p)5-
=1
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Let (U, ®) be a local chart, with coordinates {x'}, and put w, !y,
=w;dx'+ wfdy}. From V’w=0 and (6.2) [10], we have:

dw; ory. ..

2.1 ﬁ—l‘fiwp—yﬁ 6x:' wit=0 i je{l,..., n}

ow; o B ;.
(2.2) m—l‘,~,~w,= i ] ﬂe{l,..., n}

o’
23) axf ~ [hwp =0 i, j. Be{l,..., n}

4

(2.4) ‘2‘;"1 =0 i, j, o, ﬂe{l,...(, n}.

The relation (2.4) implies that the components wf are independent on {y}, and so
they areﬂthe. vertical lift of functions hf defined on U. For any fe{l,..., n}, put
(mg)y=hidx’.

Let (V, @') be another chart on M, with coordinates {x"},and UnV# Q. The
same construction gives rise to 1-forms (n}),, =hfdx". From the transformation
laws of the component of w on ny '(U)nzg '(V), it follows (m)y~y=(Tg)ynr-
Therefore, for any fe{l,...,n}, we obtain a global 1-form on M, denoted by =,.

The relation (2.3) implies V(n;)=0. Now, if we put 0=w— X (m,)§, using (2.1),
B B/B

=1
(2.2), we have that 0 is the vertical lift of a parallel 1-form n on M.
Finally, let us suppose

2.5) w=1"+ Z (n)f=p"+ Z (pp)§-
=1 B=1
For any ae{l,..., n}, XeZ (M), since n¥(X*V)=p"(X*¥)=0, we have:

T (m)5(XY)= £ (p,)5(X™),
B= B=1

1

and so 7y (X)= ann,(X)éﬁ,’: Ep,(X)&L’:pp(X). pe{l..... n}.
a=1

a=1

It follows m,=p,, and, by (2.5), n=p.
Proposition 2.3. The map ® :(P'(M, V))**'—P!'(L(M), V) defined by:

(2.6) ®(n, m,y,..., n)=n"+ Z (n5)§, @, m;;eP'(M, V),
B=1

is an isomorphism of vector spaces.
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In particular, we have :
i) dim PY(L(M), V€)=(n+1) dim P*(M, V),

ii) PY(L(M), V)=V (P'(M, V)) ® © C4(P' (M., V)),

B=1
where V, C, denote the operators of vertical and complete lifts on 1-forms.
The proof follows from the Proposition 2.2.

Proposition 2.4. Given we A'(M), we have:

i) if we P'(M, V), then, for any ae{l,..., n}, y,(w)e A(L (M), V°);

i) if y(w)e A(L(M), V€) for some a€{l,..., n}, then we P'(M, V).

Note that, if we P! (M, V), then dw =0, and by (1.15), d(y(®)) = w. From the
Proposition 2.1, it follows d(y,(w))€ P'(L(M), V), and so y,(w) is V¢-affine.
Let now suppose y,(w)e A(L(M), V€). Locally, we have: w,; = w;dx’ and

w,
d(‘ya(w»lui 1(U) = .V: KXT dxi+wrdy;'

Applying (2.3) to d(y,(w))eP‘(L(M), V©), we get:

%‘xi{ — T8w,=0; i.e. we P (M, V).

Proposition 2.5. Given fe # (M), we have :

i) fe AM, V)" e A(L(M), V);

ii) fe A(M, V) — fE e A(L(M), V), for some a€{1,..., n} (and hence for any «).
The Proposition 1.1 and the relation (1.12) imply:

VEd(f") = VU@N=(v@N); vedy<)=Vve(@dnN:)=vdNL.

From the first relation we obtain i).

Furthermore, if f is affine, from the second relation we have fCe A(L(M), V°).
Vice versa, if f¢ is affine for V¢, we have (V(df))S=0. As in the proof of the
Proposition 2.1, we obtain dfe P!(M, V), so f is affine.

Proposition 2.6. Let f be an affine function on (L(M), V). Then there exist,

uniquely determined, parallel 1-forms =n,,..., n, on M, and an affine function h on
M such that: '
(2.7) f=h"+ Z y,(my).
=1

If fis affine for V€, then dfe P'(L(M), V€), and so, applying the Proposition
2.2, we get:

df=n"+ I (ny)f =7+ I d(y,(n,)),
B=1 B=1

with =, n,,..., n,€ P'(M, V) uniquely determined. Now, put
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28) g=s— Z y4(mp),
B=1

and obtain dg=n". It follows that g is constant along the fibres of L(M), and so
g=h", he ¢ (M), and (2.8) becomes:

S=h+ Z yu(mp).
p=1

Finally, using the above relation, we get h¥ € A(L(M), V€), and then he A(M, V).
The uniqueness in (2.7) is trivial.

Proposition 2.7. The map y : A(M, V) x (P'(M, V))"— A(L(M), V) defined by
v(h, my,..., m,)=h"+ Z ys(n,)
B=1
is an isomorphism of vector spaces. In particular, we have:
(2.9) dim A(L(M), V€)=n dim P}(M, V)+dim A(M, V).

Proposition 2.8. Let us put r=a(M, V), r+s=dim P'(M, V). Then, we have :
(I) r>0, s>0. Fixed a base {1, f,,..., f,} of A(M, V), given {w,,..., w,} with
{df,. w,} base of P*(M, V), then {Lf7. (f)5, vo(w))} withie{l,..., r}je{l...., s},

ae{l,..., n}, is a base of A(L(M), V°).
(I1) r>0, s=0. Fixed a base {1, f,..... f,} of A(M, V), then {1, f¥, (f,)$ }, with
ie{l..... r}, ae{l,..., n} is a base of A(L(M), V).

(IIT) r=0, s>0. Fixed a base {w;}, 1=j<s of P*(M, V), then {1, Yo(w;)} with
je{l,.... s}, ae{l,..., n}, is a base of A(L(M), V°).

Let {df, w;} be a base of P'{M, V). The Proposition 2.6 and

(1.14) imply that {1, f¥, (f,)€. y.(w;)} spans A(L(M), V).
From (2.9), we get that this family is a base of A(L(M), V©).
Analogous arguments hold in the cases (II), (III).

§3. The space A(T(M), V)

Proposition 3.1. Given we A' (M), the following statements are equivalent:

i) we P'(M, V);

ii) w'e PY(T(M), V°);

iii) w‘e PY(T(M), V°).

Our assertion is a consequence of the relations: Vi(w°) =(Vo), V(w")=(Vo)’,
(see [13]).

Proposition 3.2. For any w € P'(T(M), V°) there exist, uniquely determined, w,,
w,eP'(M, V) such that ® = i+ 5.

For we P!(T(M), V°), applying the Proposition 1.6 and (2.2), we have
) (w)e PY(L(M), V€), and so:
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(3.1 i (@=n"+ = (n,)§
=1
with n, n,,..., m,e P'(M, V), uniquely determined. Locally, we have:
(3.2) gy = hidxI, (W)Y =(zfw)i, B, je{l...., n},

(see the proof of the Proposition 2.2).
On the other hand, if @, !y, =wdx'+w;dy’, we have:

2
Oy

By means of (3.2), we obtain m,=0, for any Be{2,..., n}.
Using (3.1) and the Proposition 1.5, we get:

(T} =(1) (57)=GTo)(e)")=5o;.

(@) =n"+( )] =11 (") + 71 (7).

Since t; is injective, we obtain: w=n"+ 5.
The uniqueness in the representation of w is trivial.
Proposition 3.3. The, map ® : PY(M, V) x P*(M, V)—P'(T(M), V°) defined by :
D(w,, w,)=w4+w5 is an isomorphism of vector spaces. In particular, we have:
i) dim PY(T(M), V)=2dim P'(M, V);
iiy PY(T(M), V)=v(P'(M, V))®c(P'(M, V)),
where v, ¢ denote the operators of vertical and complete lift acting, on the 1-forms.

Proposition 3.4. For any 1-form w on M, we have:
weP'(M, V) y(w)e A(T(M), V).

The condition Vw=0 implies dw=0, then we have:
(3-3) d(y(w))=o".

By the Proposition 3.1, we get y(w)e A(T(M), V). .
Conversely, if y(w) is affine, then d(y(w))e P*(T(M), V¢), and so d(y(w))=n"+o0°,
where 7, o € P! (M, V) are uniquely determined by the Proposition 3.2. Using (3.3),
we obtain d(y(w—o))=n" and so y(w—o) is constant along the fibres of T(M),
that is w—o=0. We deduce weP'(M, V).

Proposition 3.5. For a fixed fe #(M) we have: .
feAM, V) f e A(T(M), V) f e A(T(M), V).

The statement is a consequence of the Proposition 3.1 and of the relations
d(f*)y=(df)". d(f)=df); (see [13)]).

Proposition 3.6. Let f be an affine function on (T(M). V°). Then there exist,
uniquely determined, he A(M, V), ne P'(M, V) such that
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3.4 S=h"+y(n).

Since fe A(T(M), V), we have dfe P! (T (M), V°), and so df=w"+ n°, where o,
neP'(M, V) are uniquely determined by the Proposition 3.2. Then,
y(m)e A(T(M), V) and, using (3.3), df=w"+d(y(n)), that is d(f—y(n))=w". It
follows that f—y(m) is constant along the fibres of T(M), and so f—y(n)=h®, with
h'e A(T(M), V). This implies he A(M, V) and (3.4). The uniqueness in (3.4)
is trivial.

Proposition 3.7. The map ¥ : A(M, V) x PY(M, V)—> A(T(M), V°) defined by
¥ (h, t)=h"+y(n) is an isomorphism of vector spaces. In particular, we have:

(3.5) dim A(T(M), V9)=dim A(M, V)+dim P}(M, V).

Proposition 3.8. Put r=a(M, V), and dim P*(M, V)=r+s. We have:

(I) r>0, s>0. Fixed a base {1, f,,..., f,} of A(M, V), and given {w,,.... o,
such that {df;, w;} is a base of P'(M, V), then {1, f, fi, y(w))} with ie{1,..., r},
je{l,..., s} is a base of A(T(M), V°). '

(II) r>0, s=0. Fixed a base {1, f,,..., f,} of A(M, V), then {1, f}, f5} with
ie{l,..., r}, is a base of A(T(M), V°).

(IIl) r=0, s>0. Fixed a base {w;}, 1 <j<s, of P'(M, V), then {1, y(w;)}, with
1<j<s, is a base of A(T(M) V°).

Let {df;, w;} be a base of P'(M, V). By means of the Proposition 3.6 and of
the relation y(d’f) =f¢, we deduce that {1, f}, fi, y(w;)} spans A(T(M), V). This
family is a base of A(T(M), V), taking account of (3.5).

The cases (II), (III) can be discussed analogously.

Remark. The relation (3.5) implies that the existence of non constant affine
functions on (T (M), V) is equivalent to the condition dim P'(M, V)>0. For
instance, if M is compact and simply connected, then T(M) is not compact and has
constant V¢-affine functions only.

§4. The souls of T(M)

The existence of non constant affine functions on M leads to the construction
of souls of M (see theorem 3.5, [5]).

In this section we use the same method as in [5] to determine souls of T(M)
and, when it is possible, we establish the links with the souls of M.

We recall that a distribution D on (M, V), V symmetric, is said to be flat if, for
each X, YeD, V,Y belongs to D (see [11]).

Furthermore D is said to be geodesic if for each xe M, X € D,, the V-geodesic
y :I-M with initial conditions (x, X) satisfies: j(t)eD,,, tel.

It is well known that if D is flat, then D is integrable and geodesic.

Proposition 4.1. Assume that dim P'(M, V)=h>0. Then, there exists
a (differentiable), (n — h)-dimensional distribution D on M, which is flat. Furthermore,
the maximal integral manifolds of D are totally geodesic.

Let {w;},<i<x be a base of P(M, V). Since each w;, is parallel, w; are linearly
independent at each point of M. Therefore, they define the distribution D on
M such that
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h
D,.= () Ker(®)),, xe M.

i=1

For X, YeD, and ie{l,..., h}, we have 0,(VyY)=Vx(w;(Y))—(Va,)(Y, X)=0,
and so V,YeD. Since D is geodesic and the maximal integral manifolds of D are
connected, the last assertion holds.
Finally, note that D is independent on the base chosen in P'(M, V).
Now, we examine the three cases as in the Proposition 3.8.

The first case: dimP'(M, V)=h=r+s, r=a(M, V)>0, s>0.

Fixed {1,f,,....f,} as a base of A(M, V), and {df, w;} as a base of P'(M, V),
let {1, f7,f5, y(w))} be the corresponding base of A(T(M), {7=). It is known, (see [5]),
that the map p : M—R" such that

4.1) b.p(x)=(f1(x)....,f,(x)), xeM,

is a totally geodesic, surjective submersion; p is uniquely determined up to affine
transformations of R". Furthermore, for each ae R, N,=p~'{a} is a soul of M,
with dimN,=n—r.

Since m: T(M)—M is a totally geodesic submersion, also the map
pen : T(M)—R" is a surjective, totally geodesic submersion. Furthermore, for any
aeR’, (pon)~'{a} is the total space of the bundle T(M)y,.

Remark. Given aeR’ and xeN,, the maximal integral manifold of
D through x is a submanifold of N,.

In fact, if xe N, let V, be the maximal integral manifold of D through x, and
fix yeV,. Let us consider a curve y :[0, 1]-V, from x to y. Then, we have:

4 (LON =@ 0)=0, tel0. 11;

therefore, fi°y is constant. It follows f(y)=f(x)=a; and so yeN,.
Using the theorem 3.5 [5], we obtain that the map p’ : T(M)— R27** such that,
for any (x; X)e T(M)

@2) pP)=(f1(x).... £X). @f)e(X)..... (@f)X), (@)(X)..... (@) (X))

is a surjective, totally geodesic submersion.
Furthermore, for any ae R>*%, N,=p' ~'{a} is a (2(n—r)—s)-dimensional
soul of T(M). Obviously, the following diagram:

’

p

T(M) — R"xR"xR°®
”l p l P
M — R"

commutes, where p,(a, b, c)=a. It follows:

4.3) n(Ng)=Ng,.....qp-
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Proposition 4.2. Fixed aeR", N{, 0, is the total space of the bundle Dy .
Furthermore, D\y_ is a subbundle of T(N,).

Put a=(a,,..., a,)eR"; then

Nig.0={(x. X)e TM)|f(x)=a;, (df).(X)=0=(w))(X)}
={(x, X)e T(M)|xeN,, XeD,}.

This proves the first assertion.

Given (x, X)€ N, o) the conditions (df;),(X)=0 imply that X € T (N,). In fact,
for c, geodesic on M with initial conditions (x, X), we have: fi(c(t))=a;t+ B, ; then
a;=(df;)(¢(0)) =0, a;=f;(x) = f;(c(0)) = B;. Therefore, the curve c belongs to N,, and
so X=¢(0) is tangent to N

Corollary 4.1. The total space D(M) of the bundle D coincides with the
U N ;a.O)‘

oeR In fact, given (x, X)e D(M), we put p(x)=a€eR’". Since XeD, we have
p'(x, X)=(a, 0), and so (x, X)€ N(,,q,. Vice versa, given (x, X)€ N{, 0, we have
p(x)=a, XeD,, and so (x, X)e D(M).

We establish now the relations between the homotopies on T(M) and on M,
which realize the homotopy equivalence for N, and N, ) (see [5]).

Lemma 4.1. Let g be an arbitrary Riemannian metric on M, and g® the diagonal
lift of g to T(M) with respect to V. Then the following relations hold:

(4.4) grad®(f*)=(grad f)"=(grad /)Y —y(V(grad /)) fe A(M., V)
4.5) grad®’(y(w))=Y5, weP'(M, V)
(4.6) grad®(f9)=(grad f)’ . feAWM, V),

where Y, is the vector field associated with w with respect to g.

The relations (4.4), (4.5) are obtained by a direct computation; (4.6) follows
from (4.5), using the formulas: y(df)=f*, Y,,=grad f. The above lemma implies
the following construction.

Let us consider the symmetric matrix AeGL(2r+s, R) defined by
A=(a.,5)=(g"(grad®(h,). grad®(h,))), where h,=f7, h,.;=f{ for ie{l,..., r};

hz 4+ j=v(w)) for je{l,..., s}. Then, we have:
A 0 0
A= 0 A ¢
0 (¢y D

where A=(a;)=(g(grad f;, grad f))) C=(cy)=(g(grad fi Y,))=(Y,(fi));
D=(du)=(g(Yo,,. ij))-
The inverse matrix of A is of this kind:
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B 0 O
0 Z T
0 ‘T R

where B=(A"')". By means of B, fixed (a. b, c)e R"x R"x R*, we define the
following vector field on T(M):

B

4.7 X(a. b, )= I a;B;grad®(f))+ I b,Z;;grad”(f9)

i.j=1 i,j=1

+ T T bT,grad®(y(@)+ £ I ¢;T;;grad”(f3)

i=1j=1" i=1 j=1

+ é c;R;;grad®(y(w;) = X(a)" + W(b, c)’,

i.j=1

where X(a)= X a;B;gradf, (see [5]) and W (b, c) is a suitable vector field on M,
i.j=1
depending on Jb, c.
Proposition 4.3. Let us denote by exp® the exponential map with respect to V©.

Then the following diagram :
exp°
——

T(T(M)) T(M)
Tn | l=
™M) 2B M

commutes.

Let us fix &= (u, X)e T(T(M)), with u=(x, X). Then, we have: exp‘(§)= expj
(X)=7(1),where 7 is the V°-geodesic with initial conditions (u, X). Then, y=mn°7jis
the V-geodesic with initial conditions y(0)=n(u)=x, )’»(0)=1t,u()? ). It follows that:

n(exp(&)) = mexpi X)) = A1) =exp, (r, (X)) =(exp° T,) ().
Corgllary 4.2. For any X eZ (M), ue T(M), we have:
(4.8) 7(expi(X5)) = €XPrqu) (X xw)-
For any ue T(M), and any vertical vector X tangent at u, we have:
(4.9) n(exp§ (X)) = m(u).

Applying the construction of T. Higa ([5], 52-53) to this case, we consider the
map G :R x R¥**x T(M)—T(M) such that
G(t, a, u)=expi(tX(x),) teR, aeR?*s, ue T(M).

Fixed xe€R?"*s, let us consider the maps H,:RxT(M)-»T(M) and
7, : T(M)— N, defined by H,(t, u)=G(t, a—p'(u), u) and Fu)=G(1, a—p'(u), u).
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Then, the inclusion i, : N,—T(M) is an homotopy equivalence, since, for any
ue T(M), we have H_ (0, u)=u, H, (1, uy=1I,°F,(u).

Furthermore, if we consider the soul Np () of M corresponding to p,(x), we
denote with H, ) :RxM—M the map defined by:

H, (. x)=G(, p1(@)—p(x), x)=exp,(tX(p,(®)—p(x)),)
and we consider the retraction 7, ) :M—N, « such that:
o @(X¥)=Hp @ (1, x).
The homotopy and the retraction corresponding to the soul N, of T(M) project

onto those which correspond to the soul N, ) of M. In fact, the following result
is valid.

Proposition 4.4. The diagrams

R x RZ** x T(M) _G, T(M) R x T(M)i. T(M)
(1) idxp  x=m | l= ?) idxn | l=
RxR"xM — M RxM —— M
G Pl(a)

commute. In" particular, we have: ToF,=Tp °T

As regards the diagram (1), using (4.7), the corollary (4.2) and the relation
XH=X*—y(VX), we get:

nG(t.(a, b, c), w)=mn(expi(tX(a, b, c),)=n(expi(tX (a)i' +tW (b, k)
= €XPrw) (X (@)xw) =G (L. a, n(u)).
As regards the diagram (2), we have:
n(H(t, w)=n(G(t, a—p'W). w)=G(t p,(®)—p(n(u), n(w)=H, @t n(u)).
Finally, we obtain:

n(F,W)=n(G(, a—p'), w)=G(1, py(®)—p®)., nW)=rp @ W)).
The second case: dimP'(M, V)=r=a(M, V), r>0.
Fix {1,f,,...f,} as a base of A(M, V), and {1, 7, fi} as a base of A(T(M), V°).
Let p:M—R’", p' : T(M)—»R? be the submersions corresponding to the given
bases. The relations analogous to (4.2), (4.3) hold, with s=0. As in the Proposition
4.2, we obtain the following result.

Proposition 4.5. For any a€ R", the soul N, o, of T(M) is the total space of the
bundle T(N,). Furthermore, the total space of the bundle D coincides with the

U Ne.o-

eR" . . . .
As in the first case, we fix a riemannian metric g on M, and we consider the square
matrix 4 of order 2r, constructed in an analogous way. This matrix has the form
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L (A4 0\ . o [Ty 0
A—-(o A") with inverse matrix B—( 0 (A“)")'

It follows that, for any (a, b)e R" x R’, the corresponding vector field on T(M) is
X(a. b)=X(a)?+ X (b)".
Also in this case we consider the maps G, H, 7,, a€R?, and we obtain
a proposition which is analogous to the Proposition 4.4.

The third case: dim P'(M, V)=5>0, a(M, V)=0.

Let {1, y(w;)} be the base of A(T(M), V), corresponding to a given base {w;)
of P'(M, V). We consider the submersion p’ : T(M)—R*® such that

(4.10) P'(x. X)=((@):(X),..., (@,);(X)).

Proposition 4.6. The soul No=p'~'{0} of T(M) is the total space of the
bundle D.

The proof is trivial.
Note that, in this case, Nj is independent on the choice of the base of P!(M, V).
For a fixed riemannian metric g on M, the square matrix, of order s,
A=(g°(grad®(y(w;)), grad®(y(w,)))) coincides with D, (see the first case).
Therefore, for each xe R%, we have:

(4.’11) X@)=( T a(D ') Ya,j)"=W(a)".

i,j=1
Lemma 4.2. For any u=(x, X)e T(M), YeZ(M), we have:

expi(Yi)=(x, X +Y,).
In fact, the V‘-geodesic 7 with initial condition (u, Y}) is defined by
Y()=(xX+1Y.) .
Using (4.11) and the lemma 4.2, we obtain that the map G acts as follows, for any
u=(x, X)eT(M), teR, aeR":
(4.12) G(t, o u)=expi(tX(x),)=(x. X +tW(a),)

Finally, we have:
Proposition 4.7 Given a € R®, the homotopy H, and the retraction 7, act along
the fibres of T (M).
In fact, using (4.12), for each teR and (x,X)e T (M), we get:
w0 (x, X)=n(x, X+W@—p/(x X)).)=x,

n(Fy(x, X))=n(x, X +W(x—p'(x, X)))=x.

§5. The vector space V(T (M), V°)

We recall that, for a given connected manifold M, with a (symmetric) connection
V, it is possible to define the real spaces:
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W(M.V)={X e Z(M)|Vfe A(MV) X(f)=const, VxX =0},
W(M, V)={XeW(M, V)|V Ye W(M, V) V,X=0},
Wo(M, V)={XeW(M, V)|VfeAM, V) X(f)=0},
V(M. V)=W(M, VVwoaew:
(see [5]). Furthermore, we have:

(5.1) VX=0=XeW(M, V)

(52) dim V(M,V)<a(M, V)

(5.3) If V is the Levi-Civita connection on (M, g) then

dim V(M, V)=a(M, V)
Lemma 5.1. If X € Z(M) is V-parallel, then we have X¢, X°e W(T (M), V°).
The statement follows from the relations:
Ve (X?)=(VX)’, V¢(X)=(VX), using (5.1).
We denote by L!(M.,V) the real vector space consisting of the V-parallel vector
fields on M.

Proposition 5.1. For any X € L' ( T(M), V°) there exist, uniquely determined,
vector fields T.ZeL'(M, V), such that

(54) X=T"+Z=T"+2".

Let us put X =T+ Z, with T vertical vector field, Z horizontal vector field.
The condition V<X =0 implies, for any YeZ(M): .

(5.5) T+ VwZ =0,
(5-6) V5T + VieZ =0.
T 72 2 -1y=242 -y 2 i
Let us put T,,~ 1= 3y o lo= {5; — y'I“,;W}, where U is a chart of
. . ; . e YA oT’
M, with local coordinates {x'}. The relation (5.5) implies Y’ = 0=Y ok

Since Y is arbitrary, we deduce that the components Z!,T" are constant along the
fibres of T(M) and so T=T"*, Z=Z", with T, Z e Z(M). Substituting in (5.6), we
have (V,T)® +(VyZ) — V§<(?(Vz))=0. Since the first and the last terms are vertical,
it follows V,Z=0, for each YeZ(M), and so ZeL'(M, V). Finally, we obtain
TeL'(M, V). The uniqueness in the representation (5.4) is trivial.
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Corollary 5.1. The map i:L'(M, V) x L'(M, V) — L' (T (M), V) such that
AX.Y)=X°+Y" is an isomorphism of vector spaces. In particular, we have:
dim L'(T(M), V¢)=2 dim L'(M, V).

Proposition 5.2. Given we A' (M), the following conditions are equivalent:
a) weP'(M, V)

b) 1)< A(T(M), V°)

c) for any ZeZ(T(M)).Z horizontal, we have Z(y(w))=-0.

For a)« b) see the Proposition 3.4. Note that, if Z is an horizontal vector
field, locally we have:

.0 0
Zln"w;=Z’{§—y'Ff.-W—}. It follows that

. 0w . !

Z(y))x~ 0y =2y { 55— Thow;} =2y (Vo).
thus proving the equivalence a)«c).
To determine the dimension of V(T(M), V), we suppose that (M, g) is
a riemannian manifold and V is the Levi-Civita connection. We are going to prove
that dim V(T (M), V¢)=a( T (M), V¢). This result is a direct consequence of (5.3),
when g is flat; in fact, V¢ is the Levi-Civita connection on ( T'(M)g®) iff g is flat.

Proposition 5.3. Let (M, g) be a riemannian manifold, and V be the Levi-Civita
connection. Given 0#we P'(M, V), we have:

(5.7) YLe W(T(M), V), Y5 ¢ Wo(T(M), V°);
(5.8) , Y, e W(T(M), V°);
(5.9) Y, e Wy( T (M), V<) Y, e Wo(M, V).

Since we P'(M, V), we have Y,eL'(M.,V) and then, using the

Lemma 5.1, Y%, Y5, € W(T(M).V°). Suppose now Y% e Wy(T(M),V). Since
yw)eA( T (M), V¢), we have 0=Y(Ww)=o(Y,) =¢(Y,. Y,)’ and so w=0.
Furthermore, using the Proposition 3.6, the condition Y e Wy(T (M), V°) is
equivalent to the conditions:

(5.10) 0=Y5(f*)= Y, (/). fe AM, V)
(5.11) 0="Y5(7(n), ne PY(M, V).

Since Y,eL'(M, V), we have Y{,=Y{; by means of the Proposition 5.2, we
obtain that (5.11) is always valid. Therefore, the equivalence in (5.9) is proved.
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Proposition 5.4. Put dim P'(M.V)=r+s, r=a(M.,V). Then, we have:
(1) r>0,5>0. Fixed {df,, w;} as a base of P'(M, V), then
{grad f;)"]. [(grad f;)]. [Y5,1} is a base of V(T (M), V).
(I)  r>0,5s=0. Fixed a base {1.f,....f,} of A(M, V), then
{(grad f,)). (grad f,)1} is a base of V(T (M), V).
(Il) r=0,5>0. Fixed a base {w;}, 1<j<s, of P'(M.V), then
{[Y5,1} is a base of V(T (M), V°).

In any case, we have dim V(T (M), V<)=a( T (M), V°).

Let us consider {df;.w;} as a base of P'(M.,V). It is known ([S]), that
{[grad f;]}. 1 Si<r, is a base of V(M.,V). Therefore, grad f,¢ W, (M, V), and, since
grad f; = Y, , the Proposition 5.3 implies: (grad /)’ e W( T(M), V' \ W, ( T (M).V*).
Now, we show that {[(grad f;)"]. [(grad f;)]. [Y% 1} is free. Suppose that
a‘[(grad f;)°1+b'[(grad f;)]1+c/[Y ]1=0, and put't Z=d' grad f,+c'Y,.
T=bigrad f,. Then, we have Z°+ T<& W, (T (M),V¢), and so, for any fe A(M.V),
(Z°+T<)f*)=T(f)’=0. Therefore, Te Wo(M, V), and 0 =[T] = b'[grad f;]
implies b'=0, i=1,...r.

Since T=0, we have Z’e W,(T(M), V°), and so:

0=2"(f5)=2(f,) =g(grad f,. Z), i=1....r
0=2"(y(w;))=;(2)=9(Y,,. Z). j=1....s.

It follows : || Z||2 =a'g(grad f;, Z)+cig( Y,, .Z)=0, that is Z=0. Since {grad f,.Y,, }
is a base of L'(M, V), we have a'=0, ¢/=0, for any i and j. Therefore,
2r+s<dim V(T (M), V¢), and, using (5.2), we obtain the equality. The cases (II),
(I1T) can be proved in an analogous way.

§6. Theorems of reducibility for 7 (M) and existence
of compact souls

Let (M, g) be a connected, complete riemannian manifold, and V the
corresponding Levi-Civita connection. It is known that a(M.V)=dim V(M.V). If
a(M, V)=r>0, then, applying the theorem 3.2 [6], we obtain that, up to
diffeomorphisms, M is the riemannian product R" x M, where M is a connected
riemannian manifold, without non constant affine functions. Furthermore,
M = N, is the soul of M corresponding to the zero vector of R", determined by
means of a base {l1.f,...f,} of A(M. V) such that:

(6.1) df(grad f;)=6,; ije{l....r}.
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We consider now the manifold (TS)M), V¢). Since, generally, V¢ is not the
riemannian connection on (T (M), g”), we cannot apply the above theorem.
On the other hand, if dim P'(M, V)>0, then dim V(T (M), V*)=a( T (M), V°)>0,
and so we can apply the theorem 3.8 [5]. We get the following result.

Proposition 6.1. If dim P'(M, V)=r+s>0, then there exists a connected,
totally geodesic submanifold M' of T (M) such that T (M) is diffeomorphic to the
product R***x M'. ‘

At first, suppose r=a(M, V)>0,s>0, and fix an orthonormal base {df;, w;}
of P'(M, V, g). Let us consider the free family

(1) {(grad f;), (grad fi). Y:oj}'
and note that
(2) {Lf’{. f i} Y(wj)}

is a base of A( T (M), V¢). It is easy to show that (1), (2) satisfy a condition which is
analogous to (6.1). Therefore, applying the theorem 3.8 [5], the manifold T (M) is
diffeomorphic to R2"** x M’, where M’ = N, is the soul of ( T (M), V¢) obtained by
means of the submersion p’ defined in (4.2).

Furthermore, considering {1,f,,.f,} as a base of A(M, V) and the corresponding
submersion p:M — R’, M is diffeomorphic to the product R” x N, where N is the
soul of M corresponding to Oe R". From (4.3), we have n(No)=N,, and Np is the
total space of the bundle D,  (see Proposition 4.2). We have up to
diffeomorphisms of bundles ?

T(M)=T(R")x T(No)=T(R")x((Nox R*) ®D,, )=(M xR"**) & D

Let now suppose s=0,7>0. With the same procedure, using the theorem 3.8 [5],
we obtain that T(M) is diffeomorphic to R* x N;,, M is diffeomorphic to R"x N,
and N}, is the total space of the bundle T(N,, ), (see Proposition 4.5). Furthermore,
up to diffeomorphisms of bundles, we have T(M)=T(R")x T(N,).

Finally, suppose that r=0,s>0. Then, applying the theorem 3.8, [5], the manifold
T (M) is diffeomorphic to R* x Np, with No=D(M). So, up to diffeomorphisms of
bundles, we have T(M)=(M x R*)@® D, (see Proposition 4.6). As regards the
existence of compact souls of a non compact manifold M, we note that, if there is
a compact soul N, then each soul N, is compact (see theorem 3.5 [5]).
Furthermore, if M is the product R* x M, with k=dim V (M, V),then M is compact
iff k(M)=n—k, where k(M) is a positive integer defined by the conditions:

H{(M, Z,)=0 i> k(M)
H{M, Z,)#0 i=k(M).

For a connected manifold M, we have k(M)<dim M, and the equality holds iff
M is compact.
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Proposition 6.2. Let (M, g) be a complete, non compact, riemannian manifold,

with r=a(M, V)>0. Then TSM) has a compact soul iff M has a compact soul and
g is flat. In this case, T(M) is the trivial bundle over M.
We distinguish two cases. At first, let be dim P'(M, V)=r+s,r>0,5>0. If T(M)
has a compact soul, then Njp is compact. It follows that the soul of M, No=n(Np)
is compact, (see Proposition 6.1). Furthermore, we have k(T (M))=2(n—r)—s,
k(M)=n—r. The equality k(T (M))=k(M) implies n=r+s=dim P'(M, V), and
so g is flat. Conversely, if g is flat and M has a compact soul, we get dim
P'(M, V)=n and N, is compact. Therefore, k( T(M))=k(M)=n—r=s. Since
dim N,=2(n—r)—s=s, we have dim Np=k(Njp), and so N, is compact. Let us
suppose that Ny is compact. We have n=r+s. Since Np is the total space of the
bundle D, we get dim Npo=n—r=dimN,, and so No=N,x{0}. Up to
diffeomorphisms, for the total space of the tangent bundle we have T(M)=R2* *=
x(Nox {0})=R"x(R"x No)=R"x M. In the second case, that is dim P! (M, V)
=r>0, we suppose that T(M) has a compact soul. Therefore, N, is compact,
which implies that N,=n(Nj) is a compact soul of M. Furthermore, we have
n—r=k(M)=k(T(M))=2(n—r), and so n=r. Also in this case g is flat. Vice versa,
if g is flat and M has a compact soul, we have n=dim P'(M, V)=r, and N, is
compact. The relations dim No=2(n—r)=0 and k(N;)=k( T (M))=k(M)=k(N )
=0, imply the compactness of Np. Note that, if Nj is compact, Ny and N, both
reduce at a point; (M, g) is isometric to (R", g,) (see theorem 3.1 [6]), and
T(M)=R?", up to difffomorphisms.

Proposition 6.3. Let (M, g) be a complete and riemannian manifold with
a(M, V)=0 and dim P'(M. V)=s>0. Then T(M) has a compact soul iff M is
compact and g is flat. In this case, T(M) is the trivial bundle over M.

If T(M) has a compact soul, then Np=D(M) is compact, and so M is
compact and n=k(M)=k( T(M))=2n—s, that is n=s and g is flat. Vice versa, if
g is flat and M is compact, we have:

k(Np)=k( T (M))=k(M)=n, dim Np=2n—s=n,

and so Njp is compact.
If N, is compact, then N,=M x {0} and, up to diffeomorphisms, for the manifold
T (M), we get T(M)=R*xN,=R"x M.
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