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In the present paper we exhibit a concept of the stable metric in universal algebras. By means of stable
metric one can describe the properties of free topological algebras. For groups the notion of the stable
metric coincides with the notion of the invariant metric. The topology induced by the stable metric is
compatible with the algebraical structure.

0. Introduction

The present paper is connected with the results of A. V. Arhangelskii
(3,4], A. I. Maléev [16, 17, M. M. Coban [5-9], M. M. Coban and S. S.
Dimitrascu [11,M.1.Graev[l14],S.A.Morrisand P. Nicolas[19], A. A.
Marcov [18], S. Swierczkowski [23], W. Taylor [24, 25] and of other
authors.

In Section 1 we define the introductory notions. The terms, the polynomials
and the identities are discussed in Section 2. Section 3 is a continuation of the
Section 2. In Sections 4 and 5 we discuss the notion of stable symmetrics,
pseudometrics and metrics. i

In section 6 by Marcov — Graev — Swierczkowski constructions every normed
metric d on X is extending to a stable metric on the free algebra F(X. K). For
groups the constructions of M. I. Graev and S. Swierczkowski are studied
in [19]). By Marcov — Graev — Swierczkowski constructions W. Taylor [25] has
proved: every metric d, on X is extendible to a metric d on F(X, K) and all
operations of F (X, K) are d-continuous. It is necessary to note that Theorem 6.9
is a much more general assertion than Theorem of S. Swie rczkowski[23] and
Theorem 2.1 of W. Taylor [25]. In fact the Lemmas 6.1-6.8 are proved by
S.Swierczkowski [23], but we consider them for pseudometrics but not for
functions in Euclidian spaces.

In Sections 7-9 by means of stable metric one can describe the properties of
free topological algebras. In the case of groups this results were obtained by A. V.
Arhangelskii [3, 4, M. M. Coban [7, 8], V. K. Belnov [I12], M. L
Graev [14]

In Section 10 we study the topological quasygroups.

In Sections 11 and 12 some applications are given of the theory of stable
metrics.

The space X is zero-dimensional if dim X =0. Every space to be considered is
non-empty. Below | X| is the cardinality of X, w(X) is the weight of the space X,
uw(X) is the uniform weight of the uniform space X.

The paper uses the terminology from [10, 13, 15].
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1. Introductory definitions

The disjoint ‘sum of the discrete spaces {E, :ne N={0, 1, 2,..}} is denoted
by E and it is called a signature or a set of fundamental operations. For every
ne N the set E, is a set of operations of type n. We say that an E-algebra or an
algebra G of a signature E is given if the set G is non-empty and there are maps
{P.c :E,xG">G :neN}. The maps {P,c :neN} are called the structure of the
E-algebra in the-set G. Distinct systems of maps, even if G is the same, are
considered as distinct algebras with the same siipport G. Subalgebras,
homomorphisms, isomorphisms and Cartesian products of E-algebras are defined
as in [10, 15].

An E-algebra G together with a given topology on it is called a topological
E-algebra if all the maps P,; are continuous.

Tychonoff product of topological E-algebras is a topological E-algebra.

By a variety of E-algebras we mean a class of E-algebras closed under the
formation of subalgebras, Cartesian products and homomorphism images (sf.
[10, 15]).

Any topological space is called T_, -space. By K(E) we denote the class of all
topological E-algebras and K(E)={Ge K(E) : G is a T;-space} where ie{—1,0, 1,

1
2,3, 35},

Let an operator J be defined in a class of E-algebras. If K is a class of
E-algebras, we denote by J(K) the class obtained by applying the operator J to
E-algebras of families of E-algebras of class K. We denote by C the operator of
Cartesian products, by S, the operator of taking of E-subalgebras, by P, the
operator of Tychonoff products, by Q, H, H, the operators of taking of
factor-homomorphic images, of continuous homomorphic images and respecti-
vely of homomorphic images. A homomorphism f : X — Y of topological E-algebras
X and Y is called factor-homomorphism if the mapping f is quotient.

A class L of E-algebras is called a quasivariety if L=S(L)=C(L).

1.1. Definitions. Let ie{—1, 0, 1, 2, 3, 3%} A class K of topological

E-algebras is called:

— a T;-quasivariety if K=P(K)=S(K)c K{(E);

—a T;-variety if K=P(K)=S(K)=Q(K)NK(E);

— a complete T -variety if K=P(K)=S(K)=H(K)NK{(E);

— non-trivial if a topological E-algebra G, containing at least three different open
sets, exists in K.

Let G.be a E-algebra, X =G and X #Q@. By s(X, G) we denote the subalgebra
of the algebra G generated by a set X.

We fix a T;-quasivariety K of topological E-algebras and a space X. A couple
(F(X, K), iy), where F(X, K)eK and iy : X—F(X, K) is a continuous map, is
called a free topological E-algebra of a space X in the class K if i,(X) algebraically
generates F(X, K) and for any continuous map f: X —G with Ge K there exists
a continuous homomorphism f: F(X, K)—G with f=f°i,. A couple (F%X, K), jx),
where F%X, K)eK and jy,:X—-F%X, K) is a map, is called algebraically
or abstractly free E-algebra of X in K if FYX, K)=s(j(X), F(X, K)) and
for any map g :X—G with GeK there exists a continuous homomorphism
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g :F%X, K)>»G with g=gojy. The algebras F(X, K) and F%X, K) exist
and are unique up to topological isomorphism [5, 11, 17]. We denote by (X, K)
and (X, K) the topologies of spaces F(X, K), and F%X, K) respecti-
vely. For any space X there exists a unique continuous homomorphism

px : F4X, K) =5 F (X, K) with iy=py ° jy. If py is an algebraic isomorphism
then F(X, K) is said to be algebraically free in K.

2. Terms, polynomials and identities

Fix a signature E.

For any integers j and n with 1 <j<n we denote by bl the operation of type
n defined by bl(x,,..., Xjseres Xp) =X}

For any E-algebra G, n=1, e€E, and Xx,,..., x,€G we denote
P.c(e, xy,..., X,)=e(x,,..., x,). Then e :G">G is a map of the set G" in G.

If L — E then T(L) is, by definition, the smallest class of operations such that:

1. Lu{bl :1<j=<n, neN\{0}}=T(L);

2. Ifee LNE, where n=1 and u,,..., u,€ T(L) then e(u,,..., u,)e T(L). The
type of the operation e(U,,..., U,) is equal with the sum of types of operations
Upseoos Uy

We denote E=T(E). The set E is called the set of terms. We have
E=U/{E, :ne N} where E, is the set of terms of type n. The set E, is called the set
of constant terms. For any term the rank is determined. The elements of the set
E'=Eu{b} :1<j<ne N} are the terms of the first rank. Let E" be the set of the
terms of a rank <n.Ifm=1,g€E, and u,,..., ,€ E" theng(u,,..., u,,) is a term of
a rank <m+1. Let E™ be the set of the terms of a rank m and of a type n.

Let N,,={1, 2,..., m}.

onto

2.1. Definition. Fix the integers m and n with1<m=<n, themaph :N, — N,

and the operation f :G"— G. The operation g:G"™—G, where g(x,,..., Xoa)
= f(Xn(1)»- - - » Xnm) is called a h-permutation of the operation f. For every ie N, the
number m,(g)=|h~'(i)| is called a multiplicity of the variable x,.

The set P(E) of the polynomials or of the derived operations is the smallest
class of operations such that:

1. T(Eys P(E); -

2. If fe P(E) and g is a h-permutation of the operation f, then ge P(E).

For any polynomial the rank and the type are determined. If G is
a topological E-algebra and g€ P(E) is a polynomial of a type m then g : G™"—G
is a continuous map. .

If f, ge P(E) then the form f(x,-l,..., x,-")=g(le,...,xjm) is called an identity.
The integer |{x; ..., xi"}n{xj‘,..., x; }| is called an exponent of the identity.
The exponent indicates the number .of the variables determining identity.

For quasivariety K of the E-algebras by I(K) we denote the class of all
identities such that every algebra Ge K satisfies identites I(K). The class I(K)
is a set.
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Every element ie{—1,0, 1, 2, 3, 3%} and the set J of identities determine the

class V{(J) of topological algebras G € K,(E) which obey each identity from J. The
class V{J) is a complete T;-variety and J = I(V,;(J)). If K is a complete T;-variety
then K =V,(I(K)). For any quasivariety K and space X algebraically we have
F4X, K)=F%X, V{I(K)) (sf. [5]).

3. The support of elements

Fix a non-trivial T;-quasivariety K of topological E-algebras and the space
X. If ee T(E) is a term of zero rank then e(G)=1.; for every algebra Ge K. Let
1,=1.6. The map jy : X > F*%X, K) is one-to-one. For every xe X we identify the
elements x and jy(x). Then X,is a subset of algebra F%X, K) and jy(x)=x. Let
Lc FYX, K). Then the set L’={xeX :L\s(X\{x}, FA(X, K)#Q} is called
a support of the set L. If be F{(X, K) then X,= {b}*. Always LnXcL"

3.1. Lemma. If be FA(X, K) and X,=Q then |X|>1.
Proof If |X|=1, LcF%X, K) and L#Q, then L°=X.
3.2. Lemma. Let beF%X, K) and b=f(b,,..., b,) where feP(E),

1<n=|{b,,..., b,}| and "by,..., b,eX. If b;¢X, for some i=n then
b=f(by,..., bi—1, X, bivy,..., b,) for every xeX. Moreover, the equation
S(Xgsenns Xicas Xgo Xiwgoeees X)=f(Xg,0ees Xim1, Vi Xitr1,---, X,) 15 an identity
from I(K).

Proof. Fix an element ceX. Let us consider the map h:X—-X
where h(b,)=c, h(c)=b; and h(x)=x for every xeX\{c, b;}. By con-
dition, be G=s(X\{b;}, F%X, K)). Hence there exists an isomorphism
h:FYX, K)->F%X, K) such that h=h|X and hG)=G. If x,,..., x,eX
then A(f(x,,.... x,))=f(h(x,)...., h(x,). In particular, b=h(b) and f(b,,..., b,)
=b=h(b)=f(h(b,)...., h(b,)=f(by,..., bi—1, ¢, bis1...., b,).

3.3. Corollary. Let |X|=2. Then:

1. If be{1,:t is a term of zero type}=F§4(X, K) then X,=Q.

2. If X,=Q@ then be F3(X, K).

3. If b=h(b,..... b,)e F4(X, K), he P(E) and |{b,...., b, }|=m=1 then
h(xy 5 X,)=h(y,..... V) is an identity of zero exponent in K.

3.4. Corollary. Let | X|>1, ae F(X, K) and X,={a,,..., a,} where m=1. If
a=f(b,,..., b,) and fe P(E) then:

1. X,={b,,..., b,} and m=n.

onto

2. For some map h:N, —— N,, we have a= f(anu),---» Anw))-

3. There exists a h-permutation g of the operation f such that a=g(a,,..., a,,).
4. Operations on pseudometrics

A mapd:X x X—R" of the set X x X into the set R* of non-negative real
numbres is a pseudo-o-metric if d(x, x)=0 for every xe€ X. The pseudo-o-metric
d is called:
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— a o-metric if d(x, y)+d(y. x)=0 implies that x=y;

— a pseudosymmetric if d(x, y)=d(y. x);

— a pseudo-A-metric if d(x, z)=d(x, y)+d(y. z);

— a pseudometric if d is a pseudo-A-metric and a pseudosymmetric;

— a symmetric if d is a pseudosymmetric and a o-metric;

— a metric if d is a symmetric and a pseudometric;

—normed if d(x, y)<1;

— totally bounded if for every r >0 there exists a finite set 4 < X where for every
xe X there exists an ae A such that d(x, a)+d(a, x)<r.

Let d be a pseudo-o-metric on the set X. The set B(x,r,d)={ye X :d(x,y)<r}
is called the r-ball about xe X. The set W< X is called d-open subset if for every
xe€ W there exists r>0 such that B(x, r, d)= W. The family _#, of all d-open sets
will be called the topology induced by the pseudo-o-metric d. If x € Int B(x, r, d) for
all xeX and r>0 then d is called a strong pseudo-o-metric. Every
pseudo-A-metric is a strong pseudo-o-metric.

The pseudo-o-metric d induces a pseudometric sd(x, y)=min {d(x, y), d(y, x)},
a pseudo-A-metric Ad(x, y)=min {d(x, zo)+d(zo, z,)+ ... +d(za—y, 2z,)+d(z,,
y):z;€X. i<n, ne N} and a pseudometric md=Asd.

It is easy to prove-the following lemmas.

4.1. Lemma. If d, is a pseudometric and d (x, y)=d(x, y) then d,(x, y) < sd(x, y).

4.2. Lemma. If d, is a pseudometric and d,(x, y)=d(x, y) then
d,(x, y)=Smd(x, y).

4.3. Lemma. md <sAd.

44. Lemma. ¢ ,0 #aqV Fma< Fu
The family ¥ ={d,:ae A} of pseudo-o-metrics induces a topology

# ,=sup{ ¥, :ae A}. Every topology is induced by a family of totally bounded
pseudo-A-met';ics (sf.[5, 26]). For every family ¥ of pseudometrics there exists
a family b.# of totally bounded pseudometrics such that ¢ ,= _¢,. and for every
deb¥ there exists d, € ¥ such that d(x, y)=d,(x, y) for any x, yeX.

5. Stable metrics

Fix a signature E.

5.1. Definition. A pseudo-o-metric d on the E-algebra G is called stable if
d(P,g(e, xq,.... x,), Pu.gle. yy.---. V)SZ{d(x;, y;)isn}, i.e d(e(x,,..., x,).
e(yy.---, y) < Z{d(x;, y;) :i<n} for every n=1, ecE, and x,, y,,..., X,. Y,€G.

5.2. Lemma. If the pseudo-o-metric d on the E-algebra G is stable then and the
pseudo-A-metric Ad is stable.

Proof We fix n>1, eeE,, r>0 and x,, y,,..., X,, y,€G. There exist
elements {z;;€ G : i<n, j<m}, such that d(x;, z;y)+ ... +d(zim. y)SAd(x;, y;)+T
for every i<n. Thus Ad(e(x,,..., x,). e(yy,.... yo))=d(e(x,,.... x,), e(zyg,.--,
zm ) +d(e(zyy,---, Zm), €e(zy2,..., Zpa )+ ... +de(zym,---, Zum), €Vyr---, Ya)

<T{Ad(x;, y;):iSn}+n-r.
5.3. Lemma. The stable pseudo-o-metric d on the E-algebra G has the following
properties:
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Lodt(xy,.... X,), t(yy,---n YV)SZ{d(x;, y;):iSn} for every term t of
a type n=1.

2. d(p(xy,.--, X), PV1s---0 YA SZ{m;-d(x;, y;) :i<n} for every polynomial
p of a type n=1. The number m,=m;(p) is a multiplicity of the variable x,.

Proof. Let the Lemma be true for terms of the rank m=1. Fix n=1, eeE,
and terms ¢,,..., t, of the rank m. Assume that r; is a type of term ¢;. Then
d@(ty(X11-wer X1r)eevr Lalnteeer Xor o €3 Wstoeees Viephooer taOnsee- Yar, )
=Z{d(t(xir, -0 Xir) tiWirso--s Yir)) 1iSn}SE{E{d(xy;, i) 1jSr;} :isn}. This
completes the proof.

5.4. Lemma. If d is a stable strong pseudo-o-metric on the E-algebra G then
(G, #,) is a topological E-algebra.

Proof Let d%(x;,..., X,), (V1,---» Vu)=Z{d(x;, y;):isn}. Then d" is
a strong pseudo-o-metric. By condition the map e:G"—G is uniformly
continuous and (G", #,)=(G, #,)" for all n=1 and e€E,.

5.5. Corollary. The topology induced by a family of stable pseudometrics or
pseudo-A-metrics is compatible with the structure of the E-algebra.

5.6. Corollary. The topology induced by a stable metric is compatible with the
structure of the E-algebra.

5.7. Theorem. Let ie{—1,0, 1, 2, 3, 3—} and V be a complete T-variety of

topological E-algebras. Suppose further that d is a stable metric on the algebra Ge V
and (g d)isa Hausdorg completion of the metric space (G, d). Then d is a stable
metric on the algebra GeV and G is a subalgebra of the algebra G

Proof. The map P, :E,x G">G is uniformly continuous for every ne N
with respect to the discrete normed metric in E and metric d" in G". Hence the
map P,q is extendible to a uniformly continuous map P,g : E, x G’ —G.Then G is
an E-algebra. Fix a Cauchy sequences {{x['eG: k—l <o} {y”'EG k
=1,2,...} :m=1,2,...}. Let x§ =lim x}’ and yg =lim yg3. Then d(P,,c(e. x4,..., x8),
P.le Y<l)----. y'<',))=limd(P,,G(e, Xk,ooor XE), Pagle, Yi..... V)SZ{limd(x{,
) jsn}=Z{d(xb, yb) :j=n}. Hence the metric d is stable. If the equation
Sxy,eees x)=9g(yy,..., y,) is an identity in V then ..., x§)=limf(xi,...,
x})=limg(yi,..., y8) =g(s..... y8). Therefore GeV.

5.8. Remark. For groups the notion of the stable metric coincides with the
notion of the invariant metric. Let E be a signature of groups, where E,={0},
E,={-}, E,={+} and E=E,UE,UE,. If d is a stable metric on the
group G then d(x, y)=d(x+a)—a, (y+a)—a)=d(x+a, y+a)+d(—a, —a)
=d(x+a, y+a)<d(x, y), d(x, y)Sd(—x, —y)=d(x, y) and d(x, y)sd(b+x
b+ y)<d(x, y). Therefore the metric d is invariant. If d is invariant metric then
dla+x, b+y)<d(a+x, a+y)+d(a+y, b+y)=d(x, y)+d(a, b).

59. Remark. In a ring with a unit every stable metric is bounded. In this
case we have the signature E=E,UE,UE,, where E,={0, 1}, E,={-},
E,={+, }. If d is a stable metric in the ring G then d(x, y)<d(x, 0)+d(0,
y)=d(1-x, 0-x)+d(0-y, 1-y)<d(1, 0)+d(x, x)+d(0, 1)+d(y, y)=24(0, 1).
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6. Construction of stable metrics in free algebras

1
We fix a signature E, element ie{—1,0, 1, 2, 3, 35}, a complete non-trivial

T-variety K of topological E-algebras and a non-empty set X. Let A=F*(X, K)
and A(A)={(x, x) :xe A}. If Lc A% then L™'={(a, b):(b, a)eL}.

Consider a normed pseudometric d on the set X. We put D(1)=A? and
D(r)=A(A)u {(a, b)e A*: there exist a term ¢ of type n= 1 and elements a,, b,,...,
a,, b,e X such that a=t(a,...., a,), b=t(b,,..., b,) and Z{d(a;, b;) :j<n}<r}for
every 0<r<1. For all aeA4 and 0<r<1 we denote B(a, l$=A and B(a,
r)={be A :(a, c,)eD(r,). (c;. c;)€D(ry)..... (cpn b)e D(r,+,) for some c,, c,,...,
c,€A and positive numbers r,, 7,,..., Tp+y such that ry+r,+ ... +7p4y <r}.

Immediately from our definitions we have the following lemmas.

6.1. Lemma. D(r')<D(r)=D(r)"* for any 0<r'<r=<1.
6.2. Lemma. If be B(a, r) then acB(b, r).
6.3. Lemma. If be B(a, r,), ce B(b, r,) and r=min {1, r, +r,} then ce B(a, r).

By h™:Y™ Y™ we denote the m-th power of the map h:Y-Y where

A" yy,--e Y =h(y), ... h(y,))- )

Let LcX. If |[L|<1 then d(L)=1. If |L|=2 then d(L)=inf{d(x, y) :x, yeL
and x#y}.

The symbol t™ signifies that ¢ is a term of type n.

6.4. Lemma. Let ac A, xe X", be a term of type n and h : X —+X be a map for
which h(y)=y for every ye X, If a=t(x) then a=t(h"(x)).

Proof. Follows immediately from the Lemma 3.2.

6.5. Definition (S. Swierczkowski [23]). The system L={f\", x,
y;:1=j=m} is called a linked system iff :

1. " is a term of type n;21;

2. x; y;€X" and f§(v)= 1T, Ty .

Fix a linked system % ={f{"?, x;=(x{,..., x{.). y;=0..... y,’.,):l§j§m}.
We call two elements x, ye X associated with respect to the sysem &, writing
x ~ y, provided that, for a certain j, with 1<j<m, and a certain k, with 1<k =<n,
we have (x, y)=(x{, y{), or (x, y)=(¥. x{). We denote by =~ the equivalence relation
in X generated by ~, i.e. xxy iff x=24~ z,....z,=y for some z,, z,,..., z,eX
and K=0.

6.6. Lemma. Let L={f{?, x; y;:15j<m} be a linked system and

a=f{1(x,)e A. We denote by ~ the equivalence associated withthesystem <.
Then, for every map h : X —X, such that

(i) if x=y then h(x)=Ah(y),
(i) if xeX, then h(x)=x,
we have a= fum(h"m(y,)).
Proof. By conditions we have x{~y{ and h"x;)=h"Ay;). This implies that
192 (HHx )= £8Py and [EARA)) = £ V(R +1(x;. ). By Lemma 64 we
have a=f{1(h"1(x,))=f%(h"m(y,)). This completes the proof.
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6.7. Lemma. Let be B(a, r) and 0<}'<1. Then there exists a linked system
L={f09, x;, y; : 1Sj<m} such that a=f{1(x,), b=f3m(y,,) and the equivalence
x~y implies that d(x, y)<r.

Proof If x=(x,,..., x,)€ X" and y=(y,,..., ¥,)€ X" then d"(x, y)=Z{d(x;,
y) :j=<n}. Since beB(a, r) there are elements a,, 4,,..., a,€A4 and positive
numbers r,..., r,, such that a=a,, b=a,, r;+ ... +r,<r and (@j-1, a;)€D(r;).
For every J<m there are term f{7’ and points x; =(x{,..., x} )eX"J and
y;=0-.-, y{,)eX"f such that a;_, =f{"/(x)), a; =f{ (yJ) and d"i(x;, yJ)<rj Let
x yeX and x~y Then we have x=zy~z,~ ... ~z,=y for some z, z,,...,
z,€ X. We can assume that the sequence Zo, 2y, - - zgis of minimal length. We note
now that every pair (z;—,, z;) is of one of the forms (%, ¥5), (0%, x%) for suitable
indices g, k. Since for every pair {x%, y} there is at most one j such that {z;_,,
z;} = {xk, y%}we conclude that ={d(z;,, z)) :j <s} SZ{d(x}, y5) :q=m. k=m} <r.
Hence d(x, y)<r.

6.8. Lemma. If 0<r'<r=d(X,uX,) and beB(a, r') then a=b.

Proof. By Lemma 6.7 there. exists a linked system £={f{"?, x,
:1<j<m} such that a=f{1(x,), b=f%»(y,) and the equivalence x=~y implies
that d(x, y)<r'. There exists a map h : X —» X such that h(x)=x for xe X,u X, and
if x ~ y then h(x)=h(y). By Lemma 6.6 we have a=f{im(h"m(y,,)) and by Lemma 6.4
we have b=fUm)(h"m(y,)). We have obtained a=b. This completes the proof.

6.9. Theorem. For every normed pseudometric d on the non-empty set X there
exists exactly one stable normed pseudosymmetric d and one stable normed maximal

pseudometric d on FYX, K), such that:

1. d(x, y)=d(x, y)=d(x, y) for every x, yeX;

2. d=md=Ad.

3. If the normed pseudometric p is stable on F(X, K) and p(x, y) <d(x, y) for x,
yeX then p(x, y)<d(x, y) for any x, ye F(X, K).

4. If |X,UX,|<1 and a#b then d(a, b)=1.

5. If a, be F¥(X, K) and d(x, y)<1 then for every r>0 there exist a term t of
type n=1 and elements x,, y,,..., X, V.€X, such that a=t(x,,..., x,),
b=W,.-... y,) and d(a, b)<Z{d(x; y) ;j<n}<d(a, b)+r.

6. If d is a metric then d is a symmetric and d is a metric.

Proof. We put 4= F%X, K) and d(a, b)=inf{r :(a, b)e D(r), 0<r=<1}. Hence
for d=md we have d(a, b)=inf {r :be B(a, r), 0<r < 1}. By definition of sets D(r) we
have d(a, b)=d(b, a) and d satisfies the property 5.

Let a=t(a,,.... a,) and b=t(b,,..., b,) for some elements a,, b,,..., a, b,e A
and for a term t of type n=1. If Z{J(aj bj):j=n}=1 then we have
d(a, b)<Z{d(a; b):j<n}. Let Z{J(a b) an}—r<l Then for any j<n and

r'>0 there exist a term t; of type m; >l and elements xj, y{...., y;',l eX,
such that = a;=t(x},..., xh,). bJ—tJ(y’, . vh) and Z{d(xl, y’) Sfmj}
<d(a;, b;)+r'. Then for a term t'=t(t,,..., t,) we have a=t'(x}...., - - TN

X0, ..., X, b=t(4i..... Pty 95 Vi, Ym,) and d(a, b)SZ{d(x), yl):s<m,
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j<n}<x{d(a;b;) :j<n}+n.r. Therefore the pseudosymmetric d is stable.
By Lemma 5.2 the pseudometric d=md is stable too. By Lemma 6.8 we have
d(a, b)=d(X,uX,).Ifa, be X and a#b then d(a, b)=d(a, b)=d(a, b)=d(X,u X,)
=d({a, b})=d(a, b). Properties 1 and 2 are proved.

Let a normed pseudometric p be stable and p(x, y)<d(x, y) for any x, ye X.
We fix a, be A. If d(a, by=1 then p(a, b)<d(a, b). We suppose that d(a, b)< 1. Then
for every r>0 there exists a term ¢ of type n=1 and elements x,, y,,... X,, y,€X
such that a=t(x,,..., x,), b=t(y,...., y,) and Z{d(x;, y;) :j<n} <d(a, b)+r. Then
pla, ZZ{p(x;, y;) :j=n} =T{d(x;, y;) :j<n}<d(a, b)+r. Hence p(a, b)<d(a, b).
By Lemma 4.2 we have p(a, b)<d(a, b). Property 3 is proved.

If | X,uX,|<1and a#b then by Lemma 6.8 we have d(a, b)=d(X,uX,)=1.

If d is a metric, a, be A and a#b then d(X,u X,)>0 and by Lemma 6.8 we
have d(a, b)>0. This completes the proof.

6.10. Corollary. (S. Swierzkowski [23]). For every Tychonoff space X the
map iy : X > F (X, K) is a topological embedding, F(X, K) is a Hausdorff space and
px : F4(X, K)-»F(X, K) is an algebraic isomorphism.

6.11. Remark. If xe X< F%X, K) then d(x, 1.)=1 for every e€E,. If ¢,
geE, and 1,#1, then d(1,, 1,))=1.

6.12. Corollary. Every bounded metric d on X is extendable to a bounded stable
metric d* on F°(X, K). °

6.13. Remark. If Vis a non-trivial complete T;-variety of rings with a unit,
then any non bounded metric d on X is not extendable to a stable metric on
F%(X, V). This is a consequence of Remark 5.9.

6.14. Remark. Let us consider the following property of K :(L). For every
a, b F(X, K) there exists a linked system {f{", x;, y; :1=<j<m} such that
a=f{"1"(x,) and b=fym(y,). Then every metric d on X is extendable to a stable
metric d* on F%X, K).

6.15.Questions. Let d be a normed metric on X. By d and d we denote the
symmetric and the metric on F?(X, K) described in Theorem 6.9. Is #;= _¢;? Is
d a strong symmetric? Is (F*(X, K), ;) a topological algebra?

6.16. Question. Suppose that K is a variety with property (L) and g,
be F*(X, K). Are there a term t of type n=1 and elements x,, y,,..., X,, y,€ X
such that a=t(x,,..., x,) and b=t(y,,..., y,)?

7. Topologies on free algebras
1
We fix a signature E, anelement ie {—1,0, 1, 2, 3, 33}, a complete non-trivial

T,-variety K of topological E-algebras and a space X. Then iy : X >F(X, K) is
a topological embedding and py : F*(X, K)— F(X, K) is an algebraic isomorphism.
We identify the set F*(X, K) and F(X, K) and the elements X, iy(x), jy(x). Hence
XcF(X, K)=F%X, K).

7.1. Definition. The family {L,:ae A} of sets of a space Y is called strongly
discrete if there exists a discrete family {V,:ae A} of open subsets of Y such that
L,cV, for every ac A.
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7.2. Lemma. The set E,x={ae F(X, K) : X,=Q} is a strongly discrete subset
of the space F(X, K).

Proof. We fix a continuous normed pseudometric d on the space X. The
family {V . ={yeF(X, K) :d(x, y)<2~2} :xeE,x} is discrete.

7.3. Definition. For every polynomial t of type n=1 we put tX =t(X")c F(X, K)
and Xt=tX\{t(x,,..., x,) :l{x,..... x,}| <n}. For a polynomial t of type O we put
tX = Xt. A polinomial t will be called irreducible if Xt#Q and X_,#Q for every
ae Xt.

By definition every polynomial of zero type is irreducible. If ¢ is a polynomial
of type n=2, |X|=2 and Xt#(@ then ¢ is irreducible.

7.4. Lemma. For every polynomial t of type n the set tX is a closed subset of the
space F(X, K). If C"X ={(x,,..., x,)€ X" :|{x,...., x,}|=n} and t is a irreducible
polynomial, then t(C"X)=Xt and the map t:C"X—Xt is a continuous
open-and-closed finite-to-one local homeomorphism. If t is an irreducible polynomial
of type n=<1 then the spaces Xt and X" are homeomorphic.

Proof. Let gq:X—bX be a embedding of the space X into Hausdorff
compactification bX. There exists a continuous isomorphism 4§ :F(X, K)
—F(bX, K) such that §(X)=gq(x)=x for every xe X. The set thX is a compact
subset of the T,-space F(bX, K). Hence tX =4~ '(tbX) is a closed subset of the
space F(X, K).

Let ¢ be an irreducible polynomial of type n. If n=0 then | Xt|=|X"|=1 and
the spaces Xt and X" are homeomorphic. Let n<1. We fix a=t(a,,..., a,)€ Xt.
Then (a,,..., a,)e C"X and there exists a sequence V,,..., V, of open subsets of
bX such that a;e V; and [V;]ox N [V,]ox =@ for j#s. We denote H ;=I[V;lsx- Then
IM{H,:j<n} = C"bX and by Lemma 3.2 the map t|[1{H,:j<n} is one-to-one.
Hence the maps ¢|I1{H; :j<n} and t|I1{V, :j<n} are homeomorphisms and the
set t(II{V; :j<n}) is open in the space tX. For some k<n:=1-2-...en we have
|t '(a)l=k for every aecXt. If n=1 then t : X—tX =Xt is a one-to-one map.

7.5. Definition. The topology # on F(X, K) is called admissible if:

1. iy is a topological embedding of the space X into (F(X, K), #).

2. (F(X, K), #)eK.

3. For every term t the set tX is closed in the space (F(X, K), #) and the
topologies # and t(X, K) induce the same topology on Xt. °

7.6. Definition. The family L ={d, :ae A} of pseudometrics on the space X is
called permissible if:
1. The topology of the space X is induced by a family L.

1
2. Ifd,,..., d,eL then ;(d,+ ...+d,)eL.
3. For every ac A the pseudometric d, is normed.

7.7. Theorem. Let L={d, :ae A} be a permissible family of pseudometrics on
the space X. By L={d, :ae A} denote the family of pseudometrics described in
Theorem 6.9. Then #=sup {J;" :ae A} is admissible topology on F(X,. K).

Proof. There exists a permissible family bL= {p, : be B} of totally bounded
pseudometrics on the space X such that for every be B there exists a(b)e A such
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that p,(x, y)<d.m(x, y) for any x, yeX. Then there existsa Hausdorff
compactification cX of the space X and a permissible family M ={q, :be B} of
pseudometrics on the space cX such that g,(x, y)=p,(x, y) for any x, ye X and
beB. We put M={g, :beB}. If y, ze F(cX, K) and y#z then g,(cX,ucX,)>0
for some b e B. Therefore £ is a Tychonoff topology on F(cX, K). Hence Fais
an admissible topology on F(cX, K). Let h : X —cX be the natural embedding of
X into cX. The map h is extendible to the continuous isomorphism
h:F(X, K)-»F(cX, K). By Lemma 7.4 for every polynomial ¢ the map A is
a topological embedding of Xt into (cX)t. By construction, #, < ¢ and

Fir=h"1'# . Therefore the topologies #5 and # are admissible.

7.8. Corollary. Let d be a normed metric on the space X. Then the topology #;
is admissible.

79. Remark. Let iy be a topological embedding of the compact space
X into the Hausdorff space (F(X, K), #)eK. Then # is admissible topology
on F(X, K).

8. Basic properties of sets tX

l @
We fix a signature E, an element ie{—1,0,1, 2, 3, 35} and a complete

non-trivial T,-variety of topological E-algebras. Then for every Tychonoff space
X the algebra F(X, K) is algebraically free and X < F(X, K).

Let n=2. We put M,(n)={h:N, b N,—: :h(j)<j for every j<n}.
nn—1)
2

Then |M,(n)|=

C,(g9)={feP(E) :f is a h-permutation of g and he M, (n)}. If f is a polynomial of
type n<1 then C,(/)=0Q. .

For every polynomial g of type n we put Cy(g)={g}...., Ca=1(g)=V{C,(f) :f
€C,-2(g)} and C(g)=u{C;(g) :j=0, 1,., n—1}. The set C(g) is called the set of
natural permutations of the polynomial g. If fe C;(g) then fis a polynomial of type
n—j. In the set C(g) we fix a well-order < such that f, <f, for any f, € C{g).
f,€Cyg) and j>s.

. For every polynomial g of type n=2 we denote

8.1. Lemma. For every polynomial g and every Tychonoff space X we have
Xg=gX\u{fX :feC,(9)}-

Proof. Let g be a polynomial of type n. If n< 1, then C,(9)=0 and Xg=gX.
Let n=2. By definition, Xg={g(x) :xe C"X} and gX={g(x) :xe X"}. If x,,...,

x,€X and |{x,,..., x,}|<n, then x;=x, for some 1 <j<s<n. In M,(n) we have
the map h where h(m)=m for m<s, h(s)=j, h(m)=m—1 for m>s. Therefore for the
h-permutation f of g we have f(x;,..., Xs—1, Xs41,---, X,)=9(Xn1)s+-+» Xnmy)

=g(xy,..., X,), i.e. g(x,,..., x,) fX and feC,(g). This proves Lemma 8.1.

8.2. Lemma. Fix a polynomial g of type n. There exists a map A : C(g)— N such
that for every Tychonoff space X and admissible topology # on F(X, K) the family
{Xf:feC(g)} has the following properties :
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1. gX=u{Xf:feC(g)} and A(g)=n.

2. For every fe C(g) the set U{Xp :peC(g) and p<f} is closed in (F(X, K), #)
and fX\u{Xp:peC(g) and p<f}<=Xf. -

3. For every fe C(g) the space (Xf, #) is locally homeomorphic with the
space X,

4. If the space (gX, #) is paracompact then dimgX <locdim X*®,

Proof. Follows immediately from the Lemmas 7.4 and 8.1.

We shall say that the set Y< X is paracompact in the space X if any open in
X covering of the set Y may be refined to some locally finite in X covering of the
set Y, consisting of sets open in X. If a T;-space X has a countable cover
{X, neN} such that for every ne N the set X, is paracompact in X, then the
space X is paracompact. If a set Y is paracompact in a Hausdorff space X, then
Y is a closed subset of X.

The following lemmas are obvious.

83. Lemma. Let X be a regular space, YcX, Y=AUB, the set A be
paracompact in X and the set B\A be paracompact in X\A. Then the set Y is
paracompact in X.

84. Lemma. Let f:X—Y be a continuous map, Z<X and the map f|Z
be a homeomorphism. If the set fZ is paracompact in Y then the set Z is
paracompact in X.

Proof. It is obvious.

8.5. Theorem. Let d be a normed metric on the space X, the regular topology
F# be admissible on F(X, K) and # ;= _#. Then for every polynomial g the space (gX,
J#) is a F_,-metrizable paracompact in the space (F(X, K), #).

Proof. Denote by Y the space (F(X, K), #) and by Z the space (F(X, K), d).
Then the identity map q : Y—Z, where g(y)=y, is a continuous map. For every
polynomial g of type n<1 the map qgX is a homeomorphism and g(gX)=gX is
a closed subset of the metric space Z. By Lemma 8.4 the set gX is a F_-metrizable
paracompact in the space Y.

Suppose, that for every polynomlal g of type n<m (where m=2) the set gX is
a F,-metrizable paracompact in Y. Fix a polynomial g of type m. Then the set
Y, =uU{fX :fC(g). f<g} is a F,-metrizable paracompact in Y. By construction,
X g>gX\Y,. The map q|Xg is a homeomorphism and the set X \Y, is
a paracompact in Z\Y,. By Lemma 8.4 the set X Y isa paracompact in Y\Y,.
Therefore, by Lemma 8.3, the set gX=Y, u(X g\Y,) is a E,-metrizable
paracompact in Y.

A family S of subsets of a space X is called a network of X, if for any point
x and any neighbourhood O, in X there exists Pe S such that xe P< O, ([2)).
A Hausdorff space X with a o-discrete network is called a o-space (cf. [21]).
A Hausdorff space X with a countable network is called a cosmic space (cf. [20]).

8.6. Theorem. Let X be a paracompact o-space. Then there exists a continuous
normed pseudometric d on the space X such that for every regular admissible
topology # on F(X, K), where #;< # and for every polynomial g we have:

1. (9X, #) is a o-space.

2. The set gX is paracompact in the space (F(X, K), #).
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Proof. Let y={y,,={Fy :a€A,} :meN} be a network in X, where the
families y,, are closed and discrete in X. By Theorem of A.V.Arhangel'skii
(cf. [4], p. 134), there exists a continuous normed pseudometric d on X such that
(X, d) is a metric space and the families y, are closed and discrete in (X, d). Let
Y be a set X with metric d. We fix an irreducible polynomial ¢ of type n=1. Let
A:N"—N be a one-to-one map. If m=A(m,, m,,..., m,) then w,={H, :beB,}
= C"Xn(F;"ll X...,xFgn):(a € A,,,l yeees a,,eA,,,n) is a discrete and closed family
of the spaces C"X and C"Y. The family w=u{w,, :me N} is a network in spaces
C"X and C"Y. There exists a continuous isomorphism q : F(X, K)— F(Y, K) such
that g(x)=x for xe X and q(Xt)=Yt. The system ¥ ={tH|Hew} is a closed
o-locally finite network in spaces Xt and Yt and qtH =tH for every Hew. The
space (F(Y, K), d)=(F(X, K), d) is metric. For every me N there exists an open
locally finite family &,,={W, :beB,,} such that H, W, for every be B,,. Then
every open cover of the set X, in the space Z =((F(X, K)\tX)u Xt, #) has an open
o-locally finite refinement. Hence the set Xt is paracompact in Z. This completes
the proof.

9. The case of countable signature

We fix a countable signature E, an element ie {3, 33} and a complete
non-trivial T;-variety K of topological E-algebras. In this case the sets T(E) and
P(E) are countable. Therefore, from Theorems 8.5 and 8.6 we obtain

9.1. Corollary. The space X is a F ,-metrizable paracompact iff F(X, K) is the
same one.

9.2. Corollary. The space X is a paracompact o-space iff F(X, K) is the
same one.

9.3. Corollary. Let X be a Tychonoff space. If loc dim X" <k for every ne N
and F(X, K) is paracompact, then dim F(X, K)=<k.

94. Corollary. Let X be a zero-dimensional metrizable space. Then dim
F(X, K)=0.

9.5. Corollary. For every Tychonoff space X there exist a map g :N—N and
a decomposition F(X, K)=uU{F,(X, K):neN} such that for any admissible
topology # on F(X, K) the set U{F(X, K) :i=n} is closed in the space (F(X, K), #)
and the space (F,(X. K), #) is locally homeomorphic with the space X9™.

9.6. Theorem. Let A€ K be a first countable algebra. Then there exist a first
countable F ,-metrizable paracompact algebra Be K and a factor-homomorphism
p :B—A such that:

1. W(B)=w(A).

2. If the space A is metrizable, then B is also metrizable.

3. If the space A is metrizable by a stable metric, then B is also metrizable by
a stable metric.

Proof. By the Theorem of V. I. Ponom arev [22], there exists a continuous
open map f:X—A of a zero-dimensional metrizable space X onto A, where
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w(X)=w(4). We fix a normed metric d on the space X. There exists
a homomorphism p=f: F(X, K)— A, where f=fX. Denote by # the topology of
the space A. We put #, =sup{ ¢z, f '.#} and B is an algebra F(X, K) with the
topology _#,. The topology #, is admissible on F(X, K). Therefore B is
a F_-metrizable paracompact space. The topological algebra B is a subalgebra of
the topological algebra (F(X, K)x A, #3x #). This completes the proof.

9.7. Remark.Let je{—1,0, 1, 2, 3, 33}, ie{3, 33} and V is a complete
non-trivial Tj-variety of topological E-algebras. We put K(V)=V K{(E). Then
K/(V) is a complete non-trivial T-variety of topological E-algebras. Therefore
from Theorem 9.5 we have

9.8. Corollary. Every first countable regular algebra A€V is a factor-algebra of
a F,-metrizable first countable zero-dimensional paracompact algebra BeV and
w(A)=w(B). If the space A is metrizable, then B is metrizable as well.

10. Permutability of congruence

The theorem of A. I. Malcev [16] states that a complete T;-variety V of
topological E-algebras has permutable congruence iff there exists a polynomial
p(x, y, z) such that the-equations

x=p(y, y, x), x=p(x, y, y)

hold identically in V. By this fact A. I. Malcev [16] has proved the following
statements. If V is a congruence-permutable complete T;-variety of topological
E-algebras then:

1. Every factor-homomorphism in V is an open map.

2. If AeV is a T,-space then A is a T,-space.

3. If AeV and q is any congruence on A then the quotient space A/q is
a topological E-algebra.

10.1. Definition. A class K of E-algebras is called a class of E-quasy-groups if
for some polynomials p, I, r of type 2 we have

p(x, l(x, y)=y, Ux, p(x, y)=y;
p(r(y, x), x)=y, r(p(y, x), x)=y;
rx, iy, x))=y. lUr(x, y), x)=y.

A. I. Malcev [16] proved that every class of E-quasi-groups is
congruence-permutable, and every T, -topological quasi-group is a Tj-space.

10.2. Corollary. Let V be a non-trivial complete T-variety of topological
E-quasi-groups where ie{—1, 0, 1, 2, 3, 33} and the set E is countable. Then:

a. The space X is a F ,-metrizable or paracompact o-space iff F(X, V) is of the

same type.
b. Let X be a zero-dimensional metrizable space. Then dim F(X, V)=0.

10.2. Theorem. Every first countable Ty-topological quasi-group is a Moore
space.
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Proof. Let X be a T,-topological first countable quasi-group with binary
operations p, I, r. We fix an element 1€ X and put P(x, y)=r(p(x, I(1,1)), I(y, 1)),
L(y. x)=r(1,(x, p(y.1(1,1)))), R(x. y)=r(p(x, Iy, 1)), I(1,1)). Then X is a topological
loop relatively to operations P, L, R and P(x, 1)=P(1, x)=x for every xe X (see
[1], [16])). We fix a countable base {U, :ne N} at the point 1eX. For every
operation e : X x X - X we put &(A4, B)=e(A x B), where Ac X and B< X. Then
the families y,={P(x, U,) :xe X} are open covers of the space X.

Let x4, z,€ P(x,, U,), where ne N. Hence L(x,, xo)eL(x,., P(x,, U,)=U,,
lim L(x,. xo)=1 and lim x, =lim R(x, L(x,. Xo))=R(xo, 1)=P(R(x,. 1), 1)=x,.
The inclusion z,eP(x,, U,) implies that L(x,., z,)eU,, limL(x,, z,)=1,
limz,=lim P(x,, z,) =P(x,, 1)=x,. Then for every point xe€ X, any neighbour-
hood U of x we have y,(x) =U{P(y, U,):xeP(y, U,)} = U for some neN.
Therefore  {y,:neN} is a development for X.

10.3. Corollary. A topological quasi-group is metrizable if and only if it is first
countable and collectionwise normal.

104. Corollary. Let V be a complete T;-variety of topological E-quasi-groups,
where ie{—1, 0, 31} and the set E is countable. Every first countable
To-quasi-group A€V is a factor-quasi-group of a metrizable zero-dimensional
quasi-group BeV and w(A)=w(B).

11. Application to equivalence relations

In this section we discuss certain results related to the notion of
K-equivalence. We fix a countable signature E, an element ie {3, 31} and
a complete non-trivial T;-variety K of topological E-algebras.

11.1. Definition. We say that X is K-equivalent to Y if F(X, K) and F(Y, K) are
topologically isomorphic E-algebras.

The results of the paragraph 9, together with the Theorem 6.9 and with the
results of A. V. Arhangel'skii [3, 4], yield.

11.2. Corollary. Let F(X, K) and F(Y, K) be topologically isomorphic, where
X and Y are Tychonoff spaces. Then:
. If X is pseudocompact, then Y is pseudocompact;
If X is o-compact, then Y is o-compact;
If X is compact, then Y is compact;
If X is a cosmic space, then Y is a cosmic space;
If X is a  ,-space, then Y is a  ,-space;
If X is a left space, then Y is a left space;
If X is a Corson compact, then Y is a Corson compact;
If X is an Eberlein compact, then Y is an Eberlein compact;
If X is a sequential or bisequential compact, then Y is of the same type.

N

12. Other applications

In this section any pseudometric is considered normed. The metric product of
pseudometric spaces {(X,. d,) :a€ A} is called the set X =I1{X, :ae A} with the
pseudometric d({X, :ae A} V. :a€ A})=sup{d(x,, y,) :ac A}.
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We fix a signature E with the discrete metric b(x, y)=1 for x#y. An
E-algebra G together with a given uniformity on it is called a uniform E-algebra if
all the maps P,; are uniformly continuous. Cartesian product of the uniform
E-algebras is a uniform E-algebra.

A metric E-algebra is a pair (G, d) consisting of E-algebra G and a stable
metric d. The metric product of the metric E-algebras is a metric E-algebra. Every
metric E-algebra is a uniform E-algebra.

12.1. Definition. 4 class K of metric algebras is called a complete M-variety if
it is closed under the formation of subalgebras, metric products and homomorphic
images.

12.2. Definition. A class K of uniform E-algebras is called a complete U-variety
if it is closed under the formation of subalgebras, cartesian products and
homomorphic images.

12.3. Definition. Let K be a non-trivial complete M-variety of metric E-algebras
and (X, d) be a metric space. A system (F(X, K), d, i..), where (F(X, K), d e K and
i, : X—>F(X, K) is an isometry, is called a free metric E-algebra of a metric space (X,
d) in the class K if i (X) algebraically generates F(X, K) and for any map f: X -G
with (G, p)e K and p(f(x), f(y))Zd(x, y) for x, ye X there exists a homomorphism
f:F(X, K)>G with f=f°i_and p(f(x), f(y)<d(x, y) for every x, ye F(X, K).

Theorems 6.9 and 7.7 yield

12.4. Corollary. For every non-trivial complete M-variety K of metric
E-algebras and any metric space (X, d) we have:

1. The free algebra (F(X, K), d, i,) exists and is unique.

2. The algebra F(X, K) is algebraically free in K.

3. The topology #; is an admissible topology on F(X, K).

4. If the set E is countable, then dim F(x, K)<sup dim X" :neN.

12.5. Corollary. Let K be a non-trivial complete M-variety of metric E-algebras
and the set E be countable. Every algebra AeK is a factor-algebra of
a zero-dimensional algebra Be K and w(A)=w(B).

12.6. Definition. Let K be a non-trivial complete U-variefy of uniform
E-algebras and X be a uniform space. A Couple (F(X, K), i,), where F(X, K)e K
and i, : X—>F(X, K) is a uniform embedding of the space X in F(X, K), is called
a free uniform E-algebra of the uniform space X in the class K, if i (X) algebraically
generates F(X, K) and for any uniformly continuous map f: X -G with Ge K there
exists a uniformly continuous homomorphism f:F(X, K)—»G with f=fei..

Theorems 6.9 and 7.7 yield

12.7. Corollary. For every non-trivial complete U-variety K of uniform
E-algebras and any uniform space X we have:
The free algebra (F(X, K), i,) exists and is unique.
The algebra F(X, K) is algebraically free in K.
The topology on F(X, K) is admissible.
If the set E ‘is countable and X is a paracompact o-space,then
F(X, K) is a paracompact o-space:
if X is F,-metrizable and dim X =0, then dim F(X, K)=0.
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12.8. Corollary. Let K be a non-trivial complete U-variety of uniform
E-algebras and the set E be countable. Every first countable algebra A€K is
a factor-algebra of a F,-metrizable first countable zero-dimensional paracompact
algebra Be K and w(A)=w(B), um(A)=uw(B). If the space A is metrizable or the
uniformity on A is induced by a metric on X, then B is of the same type.
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