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In this paper we construct a sequence of pair of operators Q, mapping the
set of all real-valued, bounded and measurable in [— 1, 1]? functions on the set of
algebraic polynomials of total degree n. The two polynomials Q, f and Q, f are
under and above the function f and the sequence {[Q, f[—Q, fl,:n=1,2,....}
tends to zero with the same order as the sequence of best onesnded algebralc
approximations of f.

1. Introduction

This paper is a continuation of our investigations in [4]. We follow in general
the program sketched in Section 5.4 in this article. The new difficulties overcomed
here in comparison with [4] come from the effect of the edges for the best algebraic
approximations and from the lack of translation operators defined on the whole
domain.

A characterization of the best onesided algebraic approximations in the
univariate case is obtained by M. Stoyanova [7]. Our method of proving the
direct statement essentialy differs from this one in [7].

The paper is organized so that the reader can follow it independently from
[4]. In section 2 we give the notations and some auxiliary results. An equivalence
of weighted t-moduli and appropriate weighted onesided Peetre K-functionals is
established in Section 3. As a consequence we get one important property of the
weighted t-moduli — the possibility a multiplier to be taken out of the modulus.
In Section 4 we construct a sequence of pair of operators providing algebraic
polynomials of near best onesided approximation and prove a direct theorem.
A converse theorem and a characterization rezult for the best onesided algebraic
approximations are established in Section 5. Using the equwalence from Section
3 we simplify the proof of the converse theorem and make it transparant as in
the classical case of best approximation by trigonometric polynomials.

* Both authors were supported by contract No 50 with the Committee of Sciences, Bulgaria.



Operators for Onesided Approximation 375

2. Notations and auxiliary results

We work with bounded measurable realvalued functions defined on
Q=[—1, 1’<R?.R? is considered as a normed vector space with elements
x=(X;, X3,..., Xg), . h and norm |x|=max{|x,|:s=1, 2,..., d}.

Let X be a measurable subset of Q. We shall consider the following spaces

LX)={f:1fl,= “f“p(X)=(£|f(x)|’dx)”’< o}

1<p<o, dx — the Lebesgue measure on X and

LX) ={f:Ifllo=Ifllomxm=sup{lf(x)| :xeX}<oco}.

For the restriction of f on X we use the same symbol f.

W', denotes the Sobolev space of all functions feL ,(€) possessing weak
derivatives D*feL (Q) for any «, |¢|=r.

a, B, & are multi-indices. |a|=a, +a,+ ... +o, is the length of a, where
a=(a,, ds,..., a;). B<Sa means B,<a, for any s=1,2,...,d and (5 =1 (ﬁ'). D*

=1 'S

as usual denotes a differential operator in Q. >

Let N be a fixed natural number. We set

z2={0, 1,..., N—1}¢; Z'={0, 1,..., N}*;
z,=cos(n—vn/N), v=0, 1,..., N, z_;=z4=-—1, Zy+r1=2zy=1.
For every j=(jy, ja:---» Jjs)€Z we denote
Q;=(z;,. 211+x]>< oo X[z, 2j,41)
and for every jeZ' we denote
Qj=I[zj,-1. Zj +1]% ..t x[zj,-1. Zj341)

v 1
We set u(v)= [ exp { — 1/(u—u?)}du/f exp {— 1/(u—u?)}du for O<v<1, p(v)=0
for v<0 and u(v)o= 1 for v=1. Thercfgre peC®(R). We set

l—ﬂ((”—zo)/(zx—zo)) . for v=0;
u W)= p(v=2,- 1 z,— 2y 1 X1 —p((v—2,)(2y+1—2,))) for v=1,2,..., N—1;
u((v—2zn-1)(zy—2n-1)) for v=N.

d
For every jeZ we set ufx)= Il uj'(x,). Therefore for any xeQ we have
s=1
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(2.1 0=sp(x)=1; pfx)=0 if x¢Qj;

(2.2) T pfx)=1.

jeZ
For ve[—1, 1], t>0 we set Y(t, v)=t./1—v>+t> For xeQ we denote
d d
W(t, x)= IT Y(t, x,) and W*(t, x)= I1 Y(t, x,)%. A t neighbourhood of the point

s=1 s=1
xeQ we define by

U, x)={yeQ:|x,—y|=y(t, x,), s=1, 2,..., d}.
............... Therefore the neighbourhoods are rectangles in Q and for t<1/2

(2.3) Y(t, x)<meas U(t, x)<29¥(t, x).

By H? we denote the set of all algebraic polynomials in R? of total degree not
greater than n.

Let E (f ), be the best one-sided algebraic approximation of f in L (<),
I1<p<o, i.e. )

E(f),=inf{llg* —g e :9*€Hi, g " <f=<g"}.

By AL f(x) we denote the r-th finite difference of f (defined in Q) with step h in

point x, i.e.

R (x)= é(—1)'_"(:)1'(x+ih), if x, x+rheQ.
i=0

For a convex subset X of Q we set
w,(f; X)=sup{|ALf ()| :y. y+rheX}.
The local modulus of f in the point x is given by
w,(f; U, x)
and the average modulus of f is defined by
(2.4) (5 O,=llo(; Ut )Dlxa-
The usual moduli of smoothness
o(f; ),=sup { | ALS() ]l pey : 1R S}
will be also used.

The properties of w, are assumed to be known. The following properties of
t* follows immediately by the definition
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(2.5) r(+g; 0,27 ,+17(g5 1),

2.6) *(f; t)e is a nondecreasing function of te(0, 1].

Other properties of ¥ will be given in the next section.

In the paper r, d and p are fixed numbers, r, d —naturals standing for the order
of the moduli and for the dimension of the space respectively, 1 Sp<oco. By ¢ we
denote positive numbers which may depend only on r, d and p. The ¢’s may differ
at each occurence. The number /=max {[d/p]+ 1, r} ([.] integral part) is also fixed.

We introduce the onesided weighted K-functional as the quantity

@7 KX n,=inf{llg*—g~ l,+ Z (I'¥*(®D*g”" |l,+ ' ¥*&)D%g" ||,.)}.

laj=rl

where the inf is taken over all g* € W, C such that g~ < f<g™*. Let us mention
that in (2.7) we have only the sum for |¢|=r when r>d/p and the two sums for
|e¢|=r and |ax|=1! when r=d/p. The use of such complicated expressionin the
definition (2.7) is forced by two reasons — the treatment of the multivariate case
and the necessity to make difference between the behaviour of the function in the
interior of the domain and near to the boundary.

In the second half of the section we collect some lemmas which will be
used later.

Lemma 1. Let fe W!. Then f is equivalent to Fe C(Q) and
IFlo@=c{llfllpay+ Z ID*flpc}-

lad =1

This lemma follows from Theorems 18.10 and 18.11 in [1, p. 302, 303] because
of 1=[d/p]+1>d/p.

Lemma 2. Let ge W, Then g is equivalent to G € C(Q) and for every xeQ and
0<t=<1/2 we have

G llo ey =¢ ¥t X)™V?{g |l pve.xn

+ Z ¥t X) [ D* gl pwiexn }-
lxl =1

d
Proof. Let U(t, x)= II [a,, b,]. We have Y(t, x,)<b,—a < 2yY(t, x,). If we set

s=1
SO y)=9g(xq,..., x4), x;=(a;+b,)/2+(b,—a,)y,/2, then Lemma 1 and (2.3)
will give the statement of the lemma.

Lemma 3. Let u, ve[—1, 1] and 0<t<1/2. Then i) If ju—v|<y(t, u) then
Y(t, u)<6y(t,v) and Y(t,v)<4Y(t,u); i) meas{u:[u—y(t, u), u+y(, u)] v}
<12y(t,v). ’

Proof. i) follows from inequality (2.5) in K. Ivanov [5]. If [v—u|ZSy(t, u)
then y(z, u) S 6y(t, v) by i) and hence {u :[u—y(t, u), u+yY(t, u)] 2v} =[v—6y(t, v),
v+ 6yY(t,v)], which proves ii).
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Lemma 4. Let GeL (Q) and 0<t=<1/2. Then

1@, )~ 211G llpwa.nll ey =€l G ll piery-
Proof. Set G(x)=0 for xe R/\Q. Using Lemma 3 i), ii) and Fubini’s theorem
we have

1)1 G ll pwe. -» o

1 1 xy +w(l.xl) x‘+|p(l.x‘)
=(f .. [®E 0§ T § 16O, Yy, dyadx,...dx,)"?
-1 =1 xp =t xy) xg—w(t. xq) "
1 1 xg+wt.xg) xg+w(t.xg)
S(f..fa ] RENTNCW, e Iy - dydx,y .. dX)'P
-1 -1 Xy —wlt.xq) xgq= Wit xq)

<( j- } 44 1y measix, :[x.—'llg(::‘.;. ;C,+¢(t, x,)1=y.} G Woo yo)lPdy s dy e
-1 =1 s=1 » Js

. =cllGllpe-

Lemma 5. Let ge W'.. Then for every xeQ and 0<t=1/2 there exists
ReH!?_, such that

lg—Rlpwe.spSc T PP(t, X)) D?gllpwe.=n-
1Bl=r
Proof From a generalization of Whitney’s theorem (see e.g. [6]) for any
feW!. we get Qe H;-, such that

||f"Q||p(n)§CC0r(f; 1/M)pey=c z "D’f“p(ﬂ)

1Bl=r

because of r < 1. Applying in this inequality the same linear change of the variables
as in the proof of Lemma 2 we prove the lemma.
Lemma 6. Let g be bounded and measurable in Q. Then E,_,(g), Scw,(f ; Q).
This is a generalization of Whitney theorem. A proof can be found in [6].

Lemma 7. o,(f; Q=ct?(f; 1/2),.

Proof. Let y, h be such that |h|<1/(4r) and o,(f; 1/(4r)), <2|ALS )] Then
for every xeQ, |x—y—hr/2|<1/8 we have w,(f; 1/(4r)), <2w,(f; U(1/2, x)).
Hence o,(f; 1/(4r),<28Y"t*(f; 1/2), and o(f; Q=0,(f; 2/N,=80,(;
1/(4r)), <2.8"*Pt*(f; 1/2),, which proves the lemma.

Lemma 8. For any 0<3<A and PeH}_, we have

NP or-5.41SAA/) | Pll og-5,81-

The proof follows immediately from the extremal property of the Chebyshev
polynomials to grow faster than any other polynomial of the same degree out
of [—1, 1].
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Lemma 9. For any 0<8=<A, Qe H}_, and feL ,[—d, A] we have

1f—Qllwog=s.81 = (A/SY ~H@,(f 5 [—0, AD+ /= llw(-2.0)-
Proof. The Whitney theorem (see Lemma 6) gives an ReH}_,, such that

(2.8) If =Rl or-s.a=co,(f; [—0; A).
Lemma 8 with P=Q—R gives
I f—Qllor-2.81= | f—=Rllo-5.81+ | R—Q | o[- 3.4)
S If=Rllof-s.4+cA/0Y " IR=Qllci-s.5
S If—Rllog-s.a1+8/8) " (I f =Rl o-s.5+ IS — 2 ll og-2.1)

"which proves the lemma in view of (2.8).

"Lemma 10. Let d=1, yelz,, 2z,+1] and xe€lz,, 2,41} Then |x—y|
=yY(n(lo—pl|+1)/N, y)

Proof Let o<p ‘(the case o>p is .similar) Set {=n(p—o+1)/2N,
n=n—(p+0o+1)n/2Ny-arccosy. Then |y'—n|<¢. We have |x—y|=z,+1—2,
=2sin¢ sinn=2sin¢ sin(y +n—y)=2sin(siny cos(n—y)+cosy .sin(n—y))
<2siné(siny’ +sin§)=<2Esiny +2E2ZyY(n(p—o+1)/N, y).

Which proves the lemma.
Lemma 11. Let f be bounded and measurable in Q and let Re H¢_, be such that

“f"R"ao(a,)§er(f; Q) (ie2).
Then for any x€Q; (jeZ, v=max {|i;—j,|. s=1, 2,..., d}) we have

If = Rlw@pSc(l +v)* " *o(f; Ul(v+1)/N, x)).

Proof. Let y be any point in Q,. Denote by X the center of the rectangle Q;
and by J the line determine by y and X. Let I=[Y, y] be the smallest segment in
J containing y and J nQ;. Therefore for some s, s=1, 2,..., d we have 1Y, —X,|
=(2i,+1—2;)/2. Set i,=o. Then |y—X|/1Y—X|=|y,— X,INY,— X,| because X, Y
and 'y are colinear. Hence

ly—XV' Y—Xléz(zo-l-l —z,,)_‘max {z¢+l+v—zg' z¢+l—za—v}

cos t(1 — (o + 1 +v)/N)—cos n(1 —a/N)
cos (1 —(o +1)/N)—cos n(1 —o/N) ’

cos t(1 — (o + 1)/N)—cos (1 —(a—v)/N)}
cos (1 — (o + 1)/N)—cos n(1 —a/N)

= 2max {

1+cosn(1—(1+v)/N) __ sin?(n(1+v)/2N)
=2 l+COS1l(l—l/N) =2 Sinz(n/zN) §2(1+V)2.
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Applying Lemma 9 for the restrictions of f and R on the segment I=[Y, y] and
Lemma 6 we get

SO)—RONS e +9)* " Xw,(f; D+o,(f; Qnd)).
But y was arbitrary point in Q; Hence
If—RIl ac(nj)éc(l +v)" " o,(f; Q)
where Q;; is the convex hull of Q;UQ, Now by Lemma 10 we get Q;;

< U(n(v+1)/N, x) for any xeQ; and hence w,(f; Q;;)<2w,(f; U(n(v+1)/N,x)).
This proves the lemma.

3. Equivalence of the onesided weighted K-functional
and the average moduli

In this section we prove that the K-functional (2.7) and the average moduli
(2.6) are equivalent.

Theorem 1. Let 0<t=<1/2. Then for every fe L (Q) we have
(3.1 (5 1),ScKHS; 1),
(3.2) K¥(f; ,Sctr(f;5 1),

Proof. Let us begin with the proof of (3.1). Let g*e W,nC, g~ < f<g*. By
(2.5) we have

(3.3) 7 0,ST( =97 ),+17(@ ;5 1),
Using Lemma 2 with G=g=g*—g~ and Lemma 3, i) we get
o(f—g7; U, D221/ =97 lowesn=2"119" —97 lwwa.xn

Sc¥(t, x)7"P{llg* =g~ lpwun+ Z ¥t ¥)1DHG™ — g7 ) pwe.n}

laf =1
¥t x)" V7 {llgt—g~ lpwesn+ Z 1P @G —97) lpwe.xn}
laj =1
et x)" " {lg* —g 7 lpwesn+ = (1V2OD*g* | peesn +I P*()D?g ™ I pewee.xn)}-

laf=1

Taking L, norm in the above inequality, from Lemma 4 we get

B4 g7 0,=c{llg” =g lpa+ Z (IV(D°G” |l pery

laf =1

+ 150D~ |l pee))}-
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In order to estimate the second term in the right-hand side of (3.3) we apply
Lemmas 2, 3, i) and 5. Let R be the polynomial from Lemma 5. We have

w(g”; Ul x))=wlg”—R; U(f- xXN=2"l1g7 —R|lwwa.xn
=c¥(t, x)” l’p{ lg™ — Rl pwen + T ¥, x)||D*g~ "p(U(x.x))}
lal =1

S, x)7V7 T (e, x)I1D*g” |l pwasn
jd=rd "

Sc¥(t, x)7VP Z_ || YA()D*9 Il pwiexn-
lal=r.l

Taking L, norm in the above inequality, from Lemma 4 we get
(3.5 (e ,Sc T |FYH()DG llpe-
ol =rd
From (3.3), (3.4) and (3.5) we have
(s D,=c{llgT —g7 lpa+ T (I'¥*(1)D% +Il,,(m+ I'¥*(6)D%g ™ ll peay)}-
lal=rl

Taking infinum on g*te W, g~ <f=<g" in the above inequality we prove (3.1).

Now we turn our attention to (3.2). We set N =[2x/t]+ 1 and use the notation
for Q;, Q; and u; from the beginning of Section 2. Let ue[z,_,, z,4,] for somev=1,
2..., N —1. Because of concavity of y(t,*) we have

'l’(t- u)gmin {‘/’(t' zv—l)' 'p(tr zv+l)}'

0<z,,,—2,-,=2sin(n/N)sin(z—(v+ 1)n/N +n/N)

Moreover,

=2sin (n/N)(sin (xr — (v + 1)n/N) cos (n/N) + sin (n/N) cos (t — (v + 1)n/N))

SQn/N)(/1=2z341+7/N)SY(t, zy+1)

and similarly z,,,—2z,-; <¥(t, z,—). Therefore z,,,—z,-,SyY(t, u) for any
uelzy—y, zy+1] and [zy41. zy—1]<=u—yY(t, w), u+y(t. w). Hence

(3.6) Qjc U(t, x) for any xeQj.

Also z,, ; —z,—, =2sin(n/N) sin (nr —vr/N)Z¥(2/N, z, - ) because of sin(z — vrt/N)

=./1—22 and sin(n—vn/N)=sin(n/N)=2/N. Hence cy(t, z,)Szy4+1—2v-1,
c¥(t, z;)Smeas Q) and c'¥(t, x)=meas Q) for every xeQj because of (3.6) and
Lemma 3,1). The last inequality together with (3.6) and (2.3) gives

3.7 c¥(t, x)<measQ;=c'¥(t, y) for every x, yeQ}.
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For jeZ we set

=i — v 2 . = = ’ oy
e;(N=inf{|lf R“mm,) ReH;_\}=If R""m(ﬂj)

where R,er..,. From Lemma 6 and (3.6) we have
(3.8) e(NSo,(f; Y)=co(; Ut x) for every xeQj.

We set R%(x)=Rfx)te(f). For any xeQ; we have

(3.9) 4 Ry ()= f(x)=R}
Finally we define
(3.10) g*()= = pfx) R¥(x)e C=(Q).
jeZ

From (3.10), (3.9), (2.1) and (2.2) we get
(3.11) g ()= f(x)<g*(x) for any xeQ.

From (3.10) we have g*(x)—g (x)=2Z ufx)ef(f) and hence
. jeZ

0=<g*(x)—g (x)Scw,f; U(t, x)), because of (3.8), (2.1) and (2.2). Therefore
(3.12) Ig* —8&~ lpa=Scti(f; 1),
Fix o, |a|=r or |¢|=1I Let xeQ,, jeZ. From (3.10), (2.1) and (2.2) we have
g*X)=Rf(x)+ Z py+ ) (Rj%x)—Rj(x)

2,=0,1
and therefore (D°R} =0),

D'g*(x)= £ I (;)D“"u,+.(x) DR} {x)— R} (x)).
2,=0.1 0sfsa

From (3.6), Lemma 3, i), (3.7), the definition of u; and R, and Markov’s inequality

we have
|¥*(t) D*g* ||p(nj)§C“P“(t. zj) | Dg* ||p(nj)

o -
ScWPit, z;) Z z (ﬁ) | D*~Ppjs, ||oo(nl)||D’(Rj++¢—Rj+)||p(nj)
£,=0,1 05ps<a

Sc¥t, z) (A )T (P 2) T IR e — R iy
£,=0,1 05fsa

Sc T IR/ —R} lpapsc I (If=Rj lpap+ I/ =Rjsellnay)
e,=0,1 es=0,1

<cllo,(f; Ut )lnay-
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Summating the above inequality on jeZ we get

(3.13) YD g* | =ct¥(f; t), for every a, la|=r, L
Similarly

(3.149)  |¥YODG" llpa=ctr(; 1), Afor every a, |a|=r, L
From (2.7), (3.11), (3.12), (3.13) and (3.14) we finally get

KX 0,2119" =97 lpa+ I (I'PHOD°G™ || iy + '¥5()D°G ™ ll )

laj=r. 1
Scr(f; t),.

This proves (3.2) and completes the proof of Theorem 1.

Corollary 1. The conclusion of Theorem 1 holds for every t>0.

Proof. We have to investigate only the case t>1/2. From (2.4), Lemma 7,
(3.1) with t=1/2 and the monotonicity of K* with respect to t we get

2 1),22%0(f; Q=ct(f351/2)
1 4 14
<cKJ(f31/2),cK(f31),

which proves (3.1) for every t.
From Lemma 6 we have Re H¢_,, such that

1~ Rll wy S 5 Q.
We set g* =R+ || f — Rl )€ H?-1 . Then by (2.7), Lemma 7 and (2.6) we obtain
KXf; Do= gt —g 7 1,=2"""?If— Rl oy Scof; Q)
<ct}(f; 1/DSer(f; 0,
Corollary 2. For every A>1 we have
(3 A),ScA(f; 1),
This corollary is immediate consequence from Corollary 1 and the inequality
K (f; ), SAYK](f; 1),
which follows directly from (2.7).

4. Algebraic operators for onesided approximation

Let N be a fixed integer. For v=0,1,2,..., N—1 set u,=n—(2v+ 1)n/(2N)
and



384 V. H. Hristov, K. G. Ivanov

(u)=sin® —. ( sin®N(u—u,)  sin*N(u+u,)
o\u)= “sin*(u—u,)/2  sin*(u+u)/2

).

¢, are even positive trigonometric polynomials of degree 4N —2 such that
o, w)=1 for ue[r—(v+ 1)n/N, =—vr/N].
Making the substitution u=arccosv, ve[—1, 1] we define

F (v)=F, y(v)= ¢ (arccos v).

Lemma 12. For v=0,1,..., N—1 F, y are positive algebraic polynomials of
degree 4N —2 such that

(4'1) Fv.N(v)gl for ve[zv’ zv+l] 5
1
4.2) | [ Foodvsc(z,,,—2);
s |
N-1
4.3) 1< X F, y(v)=c for every ve[—1, 1].
v=0 N

Proof. FngiN_ 2 because ¢, is an even trigonometric polynomial. The
positivity and (4.1) for F, follow from the corresponding properties of ¢,.

* sin*N(u—u,).|sin u|

1 n
_ . —cind
—".1 F (v)dv E‘; @ ,(u) sin udu =sin 4N _I‘ sin*(u—u,)/2

du

=sin*n/(4N) E (sin*Nu/sin*u/2) [sin(u +u,) |du

k.9 .
<cN~* [ (sin® Nu/sin* u/2) |sin u| + | cos u| sin u,)du

<cN 4N?+N3sinu,)<cN 'sinu,
=c.2. sinw/(2N).sin(n—2v+ 1)n/2N)=c(z,, , —z,)
because sinu,=sinn/(2N)=1/N for v=0,1,..., N—1. This proves (4.2). The first
inequality in (4.3) follows from (4.1). Consider

G(0)=sin* n/(4N )2N£ lsin4 N(0—vn/N) /sin* (0 —vn/N)/2.

v=0

For |0|<n/(2N) we have

G(O)ScN~4(N*+ 5 1/(v/N)*)<c.
1

o=
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But G is /N periodic and hence G(0)=<c for any 0. If we set 0 =u—=n/(2N) in this
N-—-1
inequality we get X ¢ (u)=<c for any u, which proves the second inequality in

v=0
(4.3) and completes the proof of the lemma.
In the multivariate case we define (je2)

d
(4.4) q’j.N(’_‘) =IIF _1,.N(xs );
s=1

From Lemma 12 and (4.4) we imme;liately get
Lemma 13. Let jeZ. Then

4.5) q)j,NEHg(d.N—Z)- (b]_NZOZ

(4.6) D; vx)=1 for xeQ;;

4.7) 1@ nll 1oy S cmeasQ; ;

(4.8) 1=2Z®; y(x)=c for every xeQ.
jez

Lemma 14. Let a;20, jeZ. Then

1 Za;®; xll pay < c(Zaf meas Q)7
jez jez
Proof. Let ¢ be the constant in the right-hand side of (4.8). Therefore for
every xeQ by Jensen inequality we have

(Za;@; y(x)/c)P = Zaf®; y(x)/c and

JjeZ jeZ
(Za;@; y(x)P <P ' Zaf®; y(x).
jez jez

which proves the lemma in view of (4.7).

Now we are going to construct a polynomial Q,(f) providing a good local
approximation to a given function f.

Denote by T,(u)=cos (N arccosu) the Chebyshev polynomial of degree N.
The zeros of Ty are thelpoints u,=cos(r—(2v+ 1)n/(2N)), v=0,1,..., N—1. Let

k=r+1+1. Set y,=1/ | ( Ty(w)/(u—u,))*du.
-1

Denote v
Po)=1—y, | (Tyw/(u—u,))*du,
=<1

P)=7, | (Ty@)/(u—u,)*du—y,, i j (Th@/(u—u,, ))**du
2 3,

for v=1,2,..., N—2 and
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PN— l(U)=7n— 1 __‘-l ( Tn(u)/(u—uN—- 1 ))deu'

These polynomials are defined in Dzjadyk [2, § VII, 4].
Lemma 15. For v=0,1,..., N—1 we have P,e Hyn-1)+1.,

N-1 '
4.9) T P(v)=1 for every veR and

v=0
(4.10) [P |Sc(lo—vi+1)72**! if velz,, z,41]

c=0,1,..., N—1.

Proof. u, is a zero of Ty and so Tpy(u)/(u—u,) is a polynomial of degree N —1.
Hence P, € Hjyun—1)+1- (4.9) follows from the definition. From §4, Chapter VII in
Dzjadyk [2] we get

| P(0) IS c(1+lo—u, (1N, u,))” 3+,

which proves (4.10), because of 1+|v—u,|/Y(1/N, u,)2(1+|v—ol )/2 whenever
UE[Z,, za+1]'

. d
For jeZ we set I(x)=I1 P,s(x, ). From this definition and Lemma 15 we
s=1

immediately get

Lemma 16. For jeZ we have I;,€ Hyyn-1)a+a.
4.11) ZIf(x)=1 for every xe R? and
jez
d
4.12) I x)|Sc (1 +li;—j)~2**" for any xeQ, ieZ
1

Let R; by the polynomial of degree r—1 of the best approximation to fon Q,,

. IS —R; Ilm((;j)=Er-1 (.f)w(nj)- We set

@4.13) Onfi X) = ZI R (x)€ Hdxn— ravarr1-
jeZ

Jje

The polynomial Q (/) provides a good local approximation to the function f.
Finally we define

@149  Qu(f; M)=0uf: VT O ) 1S — Q) lwiay-
Jjez

Theorem 2. For any bounded and measurable in Q function f we have

(4.15) ONUNEH o141y - 11 +dtr—1 }
(4.16) Ox(f: NS S(X)SQ(Sf; x) for any xeQ;
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4.17) 128 (N — QNN lpen S €t (f; 1/N)pary-

Proof. (4.15) follows from (4.14), (4.13) and (4.5).

Let xeQ; for some je Z. Then ®; y(x)= 1 because of (4.6), which together with
(4.14) and posmvnty of ®, v — (4. 5) gives (4.16).

From (4.13) and (4. ll) we have

(4.18) JW = =ZIM () —RY)).
Jjez

Let x be any point in Q; From (4.18), (4.12) and Lemma 11 we get
4.19) 1/ =2vN) lo@p = Z i lw@p /= R; lo@)
jez

<z ﬁ(1+|i,—j,|)-2*+'(1+v,)2'-2w f; Uln(v; +1)/N, x)),
jezs=1

where v,=max{|i;—j,|:s=1,2,..., d}. We have 0Sv,SN—1. From —2k+1
< —1 for any v, 0Sv<N—1 we obtain

d
T I+, —j, )72 (14 T2 Se(l )72 2L
jGZVisv s=1

This inequality, (4.19) and Jensen inequality give

N-1
1/ = v lw@p=c §0(1+V)"2”2"‘w.(f; U(n(v+1)/N, x))

for any xeQ; and therefore

(4.20) meas Q; || f — QNN

e (T (1w oo oD,

njjo

Finally from (4.14), Lemma 14, (4.20), Minkowski’s inequality and Corollary
2 we get

x))dx.

12~ (N—C~ () "p(ﬂ)=2" Z 0, n0) IS =20 o ll ey
Sc(zmemj“f (O 6)) "ao(nj))l/p

N= 1r(v+1)

Sof(= (1+V)'2"+2' lo(f; U——F—, x))’dx)'”
Q v=0
ScNE (14v)~2k+2r-1( jw TR U("(v+ ) xpdx)te

v=0
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N—-1
=c T (1+v)"**2712(f; n(v+1)/N)pay
v=0
N—-1 -
Sc T (14v) 271425 1/N) ey < et} (f; 1/N)pay
v=0

because —2k+2r—1+2l=—3. This proves (4.17) and completes the proof of
Theorem 2.

Theorem 3. For n=r—1

E.(NpaySct?(f; 1/n)pqy
Proof Let n=d+r—1. We set N=[(n—d—r+1)/2d(r+I1+1)]+1=1.

From Theorem 2 the polynomials Qy f=0x()eH¢, Oy f<f<Q4 f and
E U’)‘z»(n)S "Q;f—Qﬁf“p(n)5CT:(f' N7t )p(msc‘t:(f' n~! )p(n) ,

where the last inequality follows from Corollary 2. Letr—1<n<d+r—1. From
Lemma 6 there is Re H_, such that

E,_ 1(f)m(m= Ilf — Rl oy S co (f; Q).

Set Qn f=R+E, ,(f)ww Then Q, feHi, Q7 fSf<Q}f and using Lemma
7 and Corollary 2 we get
1% f—On fllpey=2Y""1E, - 1(Neoiery
Scolf; Q= et/ (f; 1/2),Zct7(f; 1n),

which proves the Theorem 3.
In the case d =1 Theorem 3 is proved by M. Stoyanova [7] using different
arguments.

5. Converse resuts

In this section we shall prove a statement converse to Theorem 3 and hence
to obtain a characterization of the best onesided algebraic approximations.

Theorem 4.
T (f; 1npay<cn™" T v+1 E (Npa)-
v=0

Theorem 4 in the univariate case is proved by M. Stoyanova [7]. In the
proof of Theorem 4 we shall use

Lemma 17. For any Qe H? and any o, |a|=r, | we have

(5.1 (1 /v D*Q| piy < V™ |1l ey -
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Proof. (5.1) follows from the corresponding inequality for the univariate
case (0<k<max{r, [})

(5.2) lI(/1 = x%+ 1/V)*RO(X)|| yy = 1.1y S V*[| Rl pg - 1,1 for any ReH!.

From another side (5.2) follows from

(5.3) (/1 —=x**RO(x)|l oy - 1.11S¢V|IR| - 1.1y and
(5.4) IR®|| = 1.1 = cV?* IRl pg-1.1-

(5.3) is a generalization of Bernstein inequality. It is proved by Potapov [3].
(5.4) is a generalization of Markov inequality and its proof can be found in
S:Szego, E.Hile, J. Tamarkin [8].

Proof of Theorem 4. Let N be such that 2¥"!'<n<2. For k=0,
1,..., N set E.x(f)pay= 0 — Ok ll i@y Where Qf,‘eH‘z',‘, Or <f =<0y . Also we set
Ez“(f)pm) : =Eo(_f)p(ﬂ)= 12X — Q=1 jyWhere Q% €eH;, 07, <f=0:%,.
From Theorem 1 and (2.7) we get

(5.5) o (f; Un)pa<cKS (f; 1n),

=c{llgr —Oxll,+ = (I¥*(1/mD*Qx ll,+ '¥*(1/mD*Qx Il ,)}-

lal=r.l

By the definition of Q% we have

(5.6) 108 —Ox I, = Eo¥(Npan < E(Npisy

Sen " T+ T'E (N -
v=0
For any «, |¢|=r or |«|=1[ from Lemma 17 we get

n"(|P*(1/m)D*Qx || ,+ I¥*(1/m)D*Qx |l ;)

=
k

(II'¥=(/m)n"DHQ — @i~ 1) I, + 1P (1/mn™DXQx — Qi-1) )

0o

™M=

=
k

(152 7924D%(Qy — Q1) I, + P52 2 DQ¢ — Q- 1) II,)

]

™Mz

N
Sc T 2%(10F — Q-1 I, + 12k — Q-1 1l,)
=0

k

N
<c T 2108 —fll,+ I f— Q=1 ll,+ Q% —f I, + I/ —Qi-1ll,)
k=0

N
= CkfozkhlEz,‘ -1,
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Multiplying this inequality by n" ™! I=r, we get

(5.7) n(IP3(1/mD*Q ||, + I'¥*(1/m)D*Qy )

=c
k

™M=z

YE o1 (N),Sc Z (14 TEL)),
v=0

0

for any a, |a|=r or |a|=L
Applying (5.6) and (5.7) in (5.5) we prove the theorem.
Combining Theorems 3 and 4 we obtain

Theorem 5. Let 0<p<r. Then
E()),=0(n"*) (n—>o0) iff T7(f; 1),=0(t") (t—0+).
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