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The structure of the set of Hermitian solutions of the quadratic equation xcx+b*x+xb+a =0is
studied. Under certain conditions the set of Hermitian solutions is in one-to-one correspondence with
a certain set of projectors.

The purpose of this paper is to extend the classification of all the Hermitian
solutions of the quadratic equation in the C*-algebra C(K) of complex fpncuops
over a compact subset K of the complex field C, to all C*-algebras with unit.

In C(K) it is known that
x4 (2)=b(2)+ /B2)* +a(z) and x_(z)=b(z)—/bz)* +al2)
are Hermitian solutions of the quadratic equation
(1) —x2+2bx+a=0
for b(z) real, and b(z)*>+a(z)>0, for ze K. If K is not connected, then there exist

nontrivial nonzero idempotents in C(K). Since only values 0 and 1 are allowed for
such functions, such a function is a characteristic function of a certain subset of K.

Equation (1) has also solutions of the form
() x(2)=x , (2 (2) + x _(2) (1 — X (2)).

Let x be a solution of the equation (1). Since x, and x are solutions of (1),
we get

2b(z) (x 4 (2) — X(2)) — (x4 (2) —x(2)) (x . (2) + x(2)) =O.
Denoting the closed set {z:x.(z)=x(z)} by E. it follows that

2b(z) —(x ,(2) + X(2))=0, for zeE€

or
x(z)=2b(z)—x ,(2)=x_(2). for zeE".

Thus all the solutions of the equation (1) can be written in the form (2). The sets E
and E€ have to be closed since x(z) is continuous and bz)?+ a(z)>O0.

Let A be a C*-subalgebra of B(H), the algebra of all bounded linear operators
on a Hilbert space H. We will assume that A has a unit element e. We use [4] as a
standard reference concerning C*-algebras.
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The spectrum of an ¢lement ce A will be denoted by o (c). It is cnown that the
spectrum of an element of C*-subalgebra of B(H) is the same set as the spectrum
of this element as an element of B(H). A Hermitian element ce A will be called
nonnegative (respectively nonpositive) and denoted by ¢=0 (respectively ¢ <0) if
a(c) = [0, o0) ((— oo, 0], respectively). The open left half plane {z : Re z <0} will be
denoted by n_. The C*-algebra of 2 x 2 matrices with entries from A will be
denoted by M,(A) and it can be regarded as a C*-subalgebra of B(H®), where
H denotes the Hilbert space of pairs with entries from H. We will begin with

two definitions.

Definition: For b, ciin A, we say that the pair (b, c)isstabilizable in B(H) if

and only if there exists x, in B(H) such that o(b+cx,) =n _.Further, we say that the
pair (b,c)iscompletely stabilizable in B(H) if for each a <O there exists an
x,€ B(H) such that o(b+cx,) = {z :Re z<a}.
The notions of stabilizability and complete stabilizability are well-known in the
theory of mathematical systems, and they have been studied in detail. The reader
is referred to R. W. Brockett [1], J. W. Bunce [2], O. Hijab [6], M.
Megan [7], W. M. Wohnam [10], etc.

Remark : If ¢ is invertible then the pair (b, c) is completely stabilizable for
any be A.

We are interested in the Riccati algebraic equation

3) xcx+b*x+xb+a=0

with coefficients in 4. We will consider only the case ¢<0 and a=0.

In the algebra B(H) it is known that the stabilizability of the pair (b, c¢) implies
the existence of a maximal solution of the equation (3). The proof for an invertible
a can be found in [2], and for a=0 in [5]. If the pair (b, ¢) is completely stabilizable
then there exist a maximal and a minimal solution, x, and x_ ; that is, every
Hermitian solution x of the equation (3) satisfies the relation x_ <x=<x,. The
operator A=x,—x_ is an invertible element of B(H) if and only if
o(b+cx,) < n_.If ais invertible so is A. The proofs of the above statements and
Theorem 1 can be found in [S].

Theorem 1 is a generalization of J. C. Willem’s [9Jand W. A. Coppel’s[3]
result on matrix algebraic Riccati equation.

Theorem 1. [5, Th. 4] Let A, B, and C be elements of B(H),with A= A*, C<0,
and let the pair (B, C) be completely stabilizable. Let A=X , — X _ be invertible and
let V, be an arbitrary subspace of H invariant under B+ CX , . IfV, =A~'(V),
then H=V,@® V,. If P is the corresponding projection of V onto V, then

X=X,P+X_(I—P)

is a Hermitian solution of the equation (3). Moreover, all Hermitian solutions of the
equation (3) are obtained in this way, and the correspondence between V, and X is

one-to-one. : - Y, .
The next theorem is an extension of Theorem I to unital C*-algebras.

Theorem 2. Let A be a unital C*-subalgebra of B(H) and let a, b, c€ A with
¢<0, a=0, a invertible, and let the pair (b, ¢) be completely stabilizable in B(H).
Then
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i) There exist x, €A, a maximal, and x_€ A, a minimal solution of the
equation (3); that is, every Hermitian solution x satisfies the relation
X_=Sx=x,.

ii) The. set of Hermitian solutions of the equation (3) is in one-to-one
correspondence with the set of projectors he A satisfying hrh=rh, where

r=(x, —x_ ) 2b+cex, ) (xy —x_ )~

Proof: From [5, Th. 1] we know that there exist a maximal solution, x,
and a minimal solution , x_, of the equation (3) in B(H). Hence to prove (i) it
suffices to show that x, €4 and x_eA. To prove that x, € 4 we modify the

proofs in [2] where the same result is obtained for a=e.
One can check that

[ b c e, 0||b+ex, c e 0 @)
M_[—a, —b"]_[x, e]l: o, -—b"'—xc][—x, e] on B(H™),

for any Hermitian solution x of (3).
Since a is invertible, a(b+cx, ) = n_, as discussed before. Thus the spectrum of
M e M, (A) splits into two parts, one on each side of the imaginary axis. Let K be a

Cauchy domain with boundary k such that o(M)(\n_cKcm_.
Since M,(A) is a C*-algebra, it is norm-closed and E defined by

1
=— —M)~ !
_ 27ri£(21 )~ dz

is an element of M,(A4). It is well-known that E is idempotent and that
E commutes with M (E is the so-called spectral projection for M).

Since
a1 |e 0 (ze—(b+cx+))",d][ e, O]
(eI =M) _|:x+,e]|:0 (ze+(b+cx, )*) ! —x,, el
E can be written as
e, O p.f][ e, 0]
4 — ’
@ E [x+.e:|[0,q — X4, €
where
—Lj(ze—(b-i—cx ) " ldz
p= 27i § ¥

and

4=~ [(ze+(b+ex,)*) ldz.
2mi 3
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But p=e and q=0, since a(b+cx,) < K and o(—(b+cx,)*) do not intersect

with K.
Since E commutes with M, the operator matrices

b+cx,, c e f
[o, —(b+cx+)"'] and [o, o]

(b+cex )f+f(b+ex, ) =c.

commute. We get

The above equation has exactly one solution [8] given by

-~

an
f= — I e(b+cx+)tc e(b+cx+)‘ldt,
]

because o(b+cx, ) = n_. Note that fis nonnegative because ¢ <0. By (4) we have

E= [e x4 S :l
Xy —=XofX4, X, J.
Since E € M,(A), all entries, f, x, f, fx, and x, —x, fx, are in A. It is known that
/"2, which exists since f is nonnegative, can be written as a limit of polynomials in
f without a constant term. Hence x, f'/? is in A. Since x, —x, fx, is in A, and

X fx, =(x, fY2)(x,f"?)* is in A, so is x,.
The difference x, —x_ satisfies the equation

(x, —x_)b+ex, )+ b+ex, ) (x, —x_)=(x, —x_)c(x, —x_).

Hence (x, —x_)~ !, which exists by the invertibility of a [S, Th. 3], is a solution of
the equation

(b+ex, )(xy, —x_) " +(x,—x_) "b+cx,)*=c ‘

But the equation has a unique solution f; that we already met. It follows that
\ x_=x,—f"\

Hence x_ is in A. This completes the proof of (i).

(ii) Let x€ A be a Hermitian solution of the equation (3). Since the same equation
can be considered also in B(H), x can be written, by Theorem 1, as

x=x,p+x_(e—p)

where p is a corresponding idempotent in B(H). Set A=x, —x_. Since x, and x
are Hermitian, it follows from

x, —x=A(e—p)
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that

®) Ap=p*A.
We can also write ¢
p=e—A"Yx, —X),
which shows that p is in A. If we define h by

h=AY2pA—1/2

it follows from (5) that h*=h. }

By Theorem 1, p is a projection (not necessary orthogonal) onto the invariant
subspace of the operator b+cx,. Thus

p(b+cx, )p=(b+cx,)p.

Combining this with the definition of r in (ii) we obtain

hrh=rh.

Let he A be a projector satisfying hrh=rh. If we define

(6) p=A—1/2hA”2,
we shall show that .
(7 x=x,p+x_(e—p)

is a Hermitian solution of the equation (3).
It is a consequence of the definition of p that

(8) p*A=Ap.
Let d=x, —x=A(e—p). By (8), we get d*=d, hence x*=x. The identity
) pb+cx, )p=(b+cx,)p
follows from hrh=rh. ) : i
Since x, and x_ are Hermitian solutions of the equation (3) it can easily be
verified that
(10) —A(b+cx_)=(b+cx)*A.
From (8), (9) and (10), we conclude that

p(b+cx_)p=plb+cx_).
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Combining this with (9) we obtain
(e—p)(b+cx,)=(e—p)(b+cx,)(e—p)=(e—p)(b+cx_)+cA)(e—p)=
=(b+cx_)(e—p)+(e—p)cAle—p).
Multiplying the above equality by A on left, and using (10) again, we get
Ale—p)(b+cx )+ (b+cx,)*Ale—p)=A(e—p)cA(e—p)
from which we see that
(11) x=x,—Ale—p)
is a solution of the equation
xcx +b*x+xb+a=0.
Since A is invertible, (11) tells us that the correspondence between Hermitian

solutions and projections h satisfying hrh=rh is one-to-one. The proof is
complete.

Proposition. Let x, and x, be two Hermitian solutions of the equation (3), and
denote the corresponding projections by h, and 'h,. Then x, =X, if and only
if hyZh,.

Proof. From (6) and (7) we have
x, —X, =AY3(h, —h,)A'2.

The proposition is obvious.
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