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‘O. Introduction

Let M and M be Riemannian manifolds of dimension n and n+p,
respectively. An isometric immersion of M into M is called ‘with plauar geodesics’
when every geodesic of M ‘is mapped, locally, into a two-dimensional totally
geodesic submanifold of M.

It was pointed out that planar geodesic immersions are closely related to
isotropic ones in the sense of B. O’Neill [4.. S. L. Hong [1] and
K.Sakamoto [6] studied the cases when M is an Euclidean space and a space
form, respectively. When the ambient manifold is a complex space form, notable
results are obtained by Jin Suk Pak [5]

) In this note we consider planar geodesic immersion of complex hypersurfaces
in locally conformal Kaehler manifolds with parallel Lee form- generalized Hopf
manifolds (g. H. m.), and flat Weyl connection. These manifolds, studied mainly by
I.LVaisman (e. g [8]), are important not only as a distinguished class of
Hermitian manifolds, but also in theoretical physics: it was recently proved that
g H. m. may be used as a model for Kaluza-Klein theory [3]. We shall prove that,
under natural assumptions, the condition of having planar geodesics forces the
hypersurface to be totally geodesic or its Weingarten operator to have only three
distinct eigenvalues. )

A Aél geometric objects we consider are dssumed to be differentiable of
class C®.

The autor is thankful to the referee for his pertinent remarks and suggestions.

1. Preliminaries

In this section we recall briefly the basic definitions, formulas and results
concerning complex hypersurfaces of g. H. m. Details can be found in [2], [8]. Next
we establish some results to be used in the proof of our main results.

Let (M, J) be a complex manifold of real dimension 2n with complex
structure J; suppose M bears a Hermitian metric {,> conformall related to a
Kaehler metric in the neighbourhood of each point of M. Then M is said to be
locally conformal Kaehler (I. c. K). An equivalent definition requires the existence
of a globally defined closed one-form  (the Lee form) related to the fundamental

two-form Q by the equation
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(1.1) dQ=wAQ.
L. c. K. manifolds appear naturally in Gray-Hervella classification in the
class W,.

A g. H. m. is a L. c. K. manifold with parallel Lee form with respect to the
Levi-Civita connection V of (). The most notable examples are the Hopf
manifolds.

We suppose @ without singularities. It is easy to show [8], that a 1. c. K.
manifold is g H. m. if and only if c=|w|/2 is constant on M and Vu=0
(where u=w/|w|).

Let U be the unitary vector field metrically equivalent to u (i.c.:
(U, X>=u(X) for every X tangent to M); we call it the Lee vector field.

On a . c. K. manifold one has to consider the Weyl connection which
appears to be just the Levi-Civita connection of the locally conformal Kaehler
metrics. When the Weyl connection has vanishing curvature, the g. H. m. is called
P, A manifold [8]. We recall that #,¥ manifolds are locally symmetric
spaces [2].

We shall use the following estimation for the curvature operator of a 2,
manifold .

(1.2) RX, Y)Z=c?[u(X(Z) Y —u( Y)W(Z)X —uw(X)<Y,Z>U
+u(Y)X,Z)U+HLKY,Z)X <X, Z)Y]

In the sequel we consider M a complex hypersurface isometrically immersed
in a 2, manifold M. We denote by the same letters the induced complex
structure, and Hermitian metric. Let V be the induced Levi-Civita connection, 4
and A’ the Weingarten operators associated to the normal sections N and JN, H
the second fundamental tensor of M, y-- the normal connection.

We recall an important result proved in [2], [7]:

Lemma 1.1 If U is everywhere tangent to M, then

i) JA=—AJ; A'=JA,
ii) TrA=TrA'=0, so M is minimal.

When the ambient manifold is a (complex) space form, it is shown in [1], [6]
that the second fundamental tensor of a planar geodesic immersion satisfies
|H(X, X)||>= A2 for every unit tangent vector X, for a differentiable function A.
This property remains valid in our context (as one can see examining the proofs
from the quoted papers), so we may state:

Lemma 1.2 Let i : M—M be a connected complex hypersurface with planar
geodesics of a g. H. m. with flat Weyl connection. Then for all unit vector X
tangent to M,

Il H(X, X) [|>=22,

where A is a differentiable function on M (i. e. the immersion is isotropic).
The following result is essential. We shall adapt the proof from [5].

Lemma 1.3 In the hypothesis of Lemma 1.2, for any pair of unit tangent vectors
X, Y in meM one has

X(A2)= —2c2u(X)<{nor U, H(X, Y)>,
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where nor U is the mormml part of U.

Proof. Take m an arbitrary fixed poind of M and " a normal coordinate
neighbourhood around m in M. Let X, YeT,M so that | X|=| Y| =1 and
{(X,Y>=0. Let a be a geodesic starting at m («(0)=m) and with initial velocity Y.
From Gauss formula we have

Vaia=iV a+H( d&)=H(a a).

We may suppose H(Y, Y)=H(x(0), &(0))+*0. ) )
The geodesic a is map by i into a totally geodesic submanifold M? of M.
Then V,H(a, &) € T;;M? thus:
V..H(a, a)=a(t)ia+b(t)H(d, &)
with a and b differentiable functions of ¢. Extend X to parallel vector fields X, Y
defined on the entire ¥~ (this can be done by parallel translation of X and Y along
each unique geodesic from m to each point of ¥°). Then X and Y satisfy

V,X=V,¥=V, 7=V, =0 at m.

V42138

We now proceed to the computation of (X -A%)(m). We have successively
(X-A2)(m)=XCH(Y, Y), H(Y, Y))(m)
—2(VH(Y. ¥), HY, Y)>(m=2(ViH(Y, Y), H(Y. ¥)>(m)
=2{(VgH)(Y, Y)+2H(VgY, Y), H(Y, Y)>(m)
=2{(VgH)(Y, Y), H(Y.Y )>(m)
=2((VyH)(Y, Y)—c*u(X) nor U, H(Y, Y)>(m),
where the last equality follows from Codazzi equation. But
(VeH) (X, Y)=VyH(X, Y)=VeH(X, Y)+Ayss,Y.
Hence
(VyH) (X, ¥), H(Y, Y)>(m=(VsHX., Y). H(Y, Y))(m)
=(V,H(& 6) =0, H(Y, Y)(m)>=0.
Thus
(X-A2)(m)= —2c*w(X)<{nor U, H(Y, Y))(m).

As m was an arbitrary point of M, the proof is complete.
Remark : The result of the previous lemma is valid for submanifolds of
arbitrary codimension.
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2. Main results

Lemma 2.1 Let M be a complex hypersurface with planar geodesics everywhere
tangent to the Lee vector of a P, X manifold. Then M has a parallel second

fundamental form. In particular, the eigenvalues of A are constant. .
Proof From Lemma 1.3 we have X (A>)=0 so, by connectedness, 4% is

constant on M. Now, as above, let me M and XeT,, M be a unit vector. Let a bea
geodesic satysfying «(0)=m and &0)= X. If A=0 there is nothing more to prove. If
we assume A #0, then from Lemma 1.1 we derive V,;H(d, &)= — A%i¢. Taking into
account the Weingarten formula

VuH(@, a)=—iA H(3.4) +ViH(°"- a)

we have V;H(a, @)=0. Thus, (VH)(X, X, X)=(V,H)(X, X)=0. Now we take
X, Y, Z from T,M. The above equality implies

(VxH)(Y, 2)+(VyH)(Z, X)+(V H)(X, Y)=0.
As nor U=0 (1.2) shows that Codazzi equation reduces to
(VxH)(Y, Z2)=(VyH)(X, 2)=(V H)(X, Y).

Together with (2.1) this yields to (V,H)(Y, Z)=0 and the proof is complete.
Next we prove:

Lemma 2.2 Let M be a complex hypersurface of a P, X manifold. If M is
everywhere tangent to the Lee vector field U and has parallel second fundamental
form then it is totally geodesic or the Weingarten operator has only three distinct

eigenvalues: —pu, 0, pu.
Proof. Let {e,,...,e,_,, Je,,..., Je,_,} be the orthonormal basis in which

A has diagonal form with eigenvalues p,,..., Uy, —Hy,---r —Ho—y (2], [7]).
We recall Simons’ formula for locally symmetric minimal submanifolds [9]
2.1 (VZH)(X,Y)=ZX,{RYe; X)H(e;,Y)

— H(R(e;, X)e;, Y)—H(e;, R(e;, X)Y)},

where R and R" are respectively the Riemannian curvature tensor in the

tangent bundle and the normal bundle of M.

In our case the left side of (2.1) is null. We use Gauss equation and (1.2) to

compute the last two terms in (2.1)

H(R(e,. He,, Y) =%, {H(R(e;, X)e;, Y) + {Ae;, e )AY —(AY, e Ae,
+{JAe;, eYJAY—CJAY, e>JAe,=c*H(X, Y)—H(AY, AY)—H(AY, JAY),
H(R(e;, X)Y, e;))=—c?*H(X, Y)+ H(AX, AY)+ HJAX, JAY).

Now (2.1) takes the form
(2.2) Z,.lee,-.X)H(e,-, Y)=H(AX, AY)+ HJAX,JAY)—H(AY,AY)

—H(JAY, JAY).
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In (2.2) we put X=e¢;, Y=g, j#k. Thus, taking into account Lemma (1.1)
we obtain

(2.3) R'(e,, €,)H(e,, &)= —2uiH(e,. €).
But H(e,, e,)=u (N —JN). Since u,=const. this implies

(2.4) 1R (e,, €;)(N—JN)=—2u3(N—JN).
Interchanging j and k we also have

2.5) w;R (e;, €)(N—JN)=—2u3(N—JN).

If all 4, =0 the hypersurface is totally geodesic. If this is not the case, suppose
there exists u;#0 and u, #0, j #k. From (2.4) and (2.2) we then have

(2:4) R'(e,. e,)(N—JN)=—2uN—JN),
(2.5) R*(e;, e,)(N—JN)=—2u}(N—JN).
But Rl(e,‘, ej)=—RL(ej, e,) so, from the last two relations we get

pi +p? =0, contradiction. )
It remains that 4 may have only two nonzero eigenvalues: u and —u.
We now consider the distributions

To(x)={XeT M; AX=0};
T,x)={XeTM; AX=uX};
T_(x)={XeTM; AX=—puX}.

Note that dim T, =dim T_=1, dim T,=2n—4.

Obviously T M =Ty(x)DT ,(x)D T _(x).

One easily shows all of the three distributions are differentiable. They are also
involutive. We shall prove this for T, (x):

A[X, Y= AV, Y— AV, X =V AY =V AX =uV, Y —pVy X =p[X, Y]

for every X, Ye T, (x). X

Finally, ‘the three distributions are parallel. We give the proof for T,(x): Let

XeT,(x) and Ye T M. Then AV, X=V,AX=uV,X so V,Xe€ T . (x).
Gathering together the two preceding lemmas we may now state:

Theorem 2.3 Let M be a g. H. m. with a flat Weyl connection and i: M —-M a
planar geodesic immersion of a connected complex hypersurface everywhere tangent

to the Lee vector field.
Then M is totally geodesic or is the Riemannian product M, x M, x M _

where M, , M, M _ are respectively the maximal integral manifolds of T, , Ty, T _.
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