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Approximation Splines

Blagovest Sendov

In this paper we construct explicitly local splines with uniform knots having
good approximation properties. These splines, called. approximation splines or
A-splines for conveniency, belong to the so-called quasi-interpolants or to other
constructions used in the works of G. Birkhof [1], C. De Boor [2, 3], C. De
Boor and G. J. Fix [4], T. Lyche and L. L. Shumaker [5] and others.

The advantage of A-splines is the simplicity of their representation, that
proposes an opportunity for estimation with concrete constants.

In this paper we will consider only the definition and some approximation
properties of A-splines with uniform knots in the one dimensional case. It is
possible to transfer the definition of A-splines with uniform knots to function of
more than one variables as well. The idea of defining A-splines could be applied in
the case of ununiform knots, but devided differences should be used.

1. Definition of an A-spline

Let {x;} be an uniform net of knots with a stepsize h(x;,,=x;+h;;
i=0,+1,+2,..) and f be a function, defined on the real axis. Let use the
denotations f(x;)=f, and

. .
(1) AL flx)=A'fi= Z (—U""(f)fw,
j=0

for k — a natural number.

Denote Qy-1.:(f; x)=Q{f; x) the interpolation algebraic polynomial of
degree k—1, uniquely defined by

(2) Q:(f; xy)=f; for j=i, i+1,..., i+k—1.

Define the algebraic polynomial for every integer i

a - k—1
(3) F(fs x)=0:(f; x)+ X Pj(x hx‘—T)AkaJ-

ji=-q

where the algebraic polynomials P;(x); j=0, +1, +2,...+q, of degree <k are
chosen in such a way, that the identity
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@ Fulfi 9=Fi(f; x)=( =) I BAYie
ji=—q

holds, where §;;j=—q, —q+1,..., g+ 1 are constants appropriately chosen, and
g is a given natural number. :

Definition 1. The function A, (f) is called A-spline of order (k, q) of the
function f for the net {x;} if

x—x; k+ 1)" g+

(5) Ay (f3 X)=F(f; x) for xe["f“kzlh' x‘+k;1h)'

It is obvious from (4) that A4, (f), defined by (5), is a spline indeed.

So we further need to prove that it is possible to choose the polynomials P;
and the constants §; in such a way, that the identity (4) is valid. But this will be
done later.

Now from the definition (2) of Q;(f) it follows that

©) Qierf; 0— 0L x)=¢(f‘-1hﬁ)A*f;,
where
7 (p(x)=—-—l———-(x—l)(x—2)...(x—k+1).

k—1)!

Lemma 1. If 2q=k—1, then there exist constants fs=8,;j=—q, —q+1,...,
q+ 1 for which the identity (8) holds. F=l 44

et . k+1
®) T Bx +1)*=<p(x+ —2—)
J=-q

Proof. Comparing the coefficients preceding the degrees of x, we obtain a
system of k+ 1 linear equation for the constants f; The system has a solution for
2qg+2=k+1 or 2q=k—1.0

After determining the constants B; to satisfy the identity (8) we define the
polynomials P; as follows:

q+1

©) Py(x)= X B x+p—j—1)F for j=0, 1, 2,..., q
p=j+1 ’
j .
(10) P;(x)= = B(x+p—j—1* for j=—q, —q+1,..., —1.
Pp=—q

From the equalities (9) and (10) we directly obtain the following dependences

(11) Px—1)=B,s(x—1F P_()=—B_x— 1),

(12) Pj(x—l)—-P]+,(x)=ﬁjH(x—— 1y forj=—gq, —q+1,...,—2,0,1,...,g—1,
+1

(13) P (x—1)—Po()=Box—1f'— £ B x+p—1)

Pp=—q
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Lemma 2. If the polynomials P; are defined by the equalities (9) and (10) and
the constants B; satisfy the zdenttty (8), then the identity (4) is valid.

Proof. From (3) using (8) and (13) we obtain
Fivr(fs X)—F;(f; X)=Qi+1(f; x)“Qi(fQ x)

a x—x; k—1 a x—x; k—1
+ z Pj( h +l_ 2 )Ak.fi"’j-kl'_ Z Pj( h ——)A’ff‘+_’

J=~q j=—q 2

x—X; —x; k+1 x— k
oot ot {555 o

o1 x—x; k+1 x—x; k
S (53 gy (2

i=—a

at1 x—x; k+1 x—x; k+1
= 2 ﬂj(—h — 5 +)Av+ﬂq+1(—h ——“)Aﬁ+q+l

i=—q 2

x—x; k+1 a1 x—x; k+1
+B- ( ) )Akf: +.Z ﬁj+l( h P) )Aﬂ+,+1
J=—q

j#E—1

| x—x; k+1Y\ ., at1 x—x; k+1 e
L JIC I o

x—x; k+1\9:!
=( h _T) T BAY.,,. O

j=—q

2. Approximation properties of an A-spline

To estimate the distance between a given function and its A-spline, we need
the following theorem [6], which represents a precision of the well-known theorem
of H. Whitney [7].

Theorem 1. Let the function f be integrable on a finite segment [x;_, x; +x] and
possess a bounded k-th modulus of smoothness

(14 w,(f:8)=sup {|A{f(x) :|t| =6}

on this segment, where {xg is a uniform net with a stepsize h. Then for the
interpolation polynomial Q(f) the estimate (15) holds

(15) If = QNI = Wi f; h).
where |- || is the uniform norm on the segment [x;_,, X;+x] and W, are constants,
depending on k, for which (15) is valid and
14

(15) W =W,=1, Wy< o, W,<325 W,<6 for- k=5.6.7....

From the definition of A-spline and Theorem 1, we obtain
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Lemma 3. Let the function f be defined on the real axis and has a bounded k-th
modulus of smoothness. Then

q
(16) I/= Ak DI =W+ £ max |P, ()W, (S; h),

i=—q 0=zt=1

where |- || is the uniform norm on the whole real axis and W,(f; h) is the bounded
k-th modulus of smoothness on the real axis.

Proof. Taking into account that A, ,(f; x)=F,(f; x) for xe[x,.+ k;lh,

2
1
l‘-—;—h , from (3) and (15), (16) follows directly.

From (5) and (3) we obtain also the estimate for the k-th derivative of 4, (/)
beyond the knots {x;}: ’

X;+

q
) I4EXNI=h™ Z PP o (f; h).

i=-q

To compute the values in the right sides of the estimates (16) and (17), we will
express the constants f; using certain new constants a; in the following way

q+1
(18) dh=a;=k! T B, for j=0,1,2 ... q
. p=j+1
J
(19) af=a;=k! T B, for j=—q, —q+1,..., —1.
pP=—4q

From the identity (8), it follows that

q+1
(20) z =0,

j=—q

since ¢(x) is a polynomial of degree k— 1. Taking into consideration (1‘8)-(20), we
can express the constants f; by the constants a;

1 1 1
@n ﬂq+l=;‘!°‘q' ﬂ—q""’ﬁ“—q' B;= E(a;’,—l—a;)

for j=—q+1, —q+2,..., q.
Thén the identity (8) could be written in the following way

(22) %j=2—qaj[(x+j+1)"—-(x+j)"]=(p<x+ k—;——l-)

From (22) comparing the coefficients preceding x*~! we obtain
q

(23) T =1

i=-q
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Based on certain considerations for symmetry, we could take such constants «;
for which ;

(24) a_ ;=0 holds for j=1, 2, 3,..., q.

So, to define the constants «;; j=1, 2, 3,..., g, we obtain the identity

(25) (x+1)y—x*+ éozj[(x+j+1)"——(x+j)"+(x—j+1)"—(x—j)“
ji=1

—2(x+ 1)"+2x"]=(p(x+ ~k;—l>

If we denote
) ) q
(26) - R(x)=x*+ T aj[(x+j)*+(x—j)—2x*"],
j=1
then the identity (25) could be expressed as follows

27 R(x+1)—R(x)=k! (p(x+ k—;l)

It is obvious from (27) that tht;‘ polynomial R(x) of degree k assumes same
—1 k-3

values in k different points x=-——, — ..., — > since ¢(x)=0 for

2 2
x=1, 2, 3,..., k—1. Therefore

k—1 k-3 k—1
(28) R(x)=A+(x——§—>(x—T>.(x+ —'2—>'

as it is evident from (26) that the coefficient of x* in the polynomial R(x) is equal to
1. In (28) A4 is an arbitrary constant.

And finally, to determine the constants a;; j=1,2,3,..., q we obtain the
following identity

(29)

T|M|h

Y [Ge 47k + (x—j)f —2x* ] = @ulx),

where

30 (p,(Jc_)=(x— k—;-—l—)(x-— k—;:i)(x+ k—g—l)—x“+A.

Using (21), the polynomials P, defined by (9) and (10) can be written using
the constants a;, namely

1 a4
G Py= et T opleetp—t—Gx+p—j—1}]

‘p=j+1

for j=0, 1, 2,..., q



Approximation Splines 111

1 it
() P=peyc— D+ gr B ol tp—i— D —(x+p—it]

for j=—q, —q+1,..., —1.
From (31) and (32) we directly obtain

(33) 1Pl =lo;]  for j=0, 1, +2,..., £q;
1 q
(34 max |P;(0)I= ilyl+ = lt, I[P —j + D) — (P —i)* 1}
0sx<1 ’ p=J+1

for j=0, 1, 2,...,q;

1 i
(33) max |P;(x)| = p5{loy1+ X lop G —p+ D —(—p)*1}

0sx=<1 g
for j=—q, —q+1,..., —1.
Theorem 2. Let f be defined on the real axis, integrable on every finite segment

and have a bounded k-th modulus of smoothness. Then for A-spline of the function f
on the uniform net {x;} with a stepsize h the following estimates are valid :

!
tJ
q

(37) IARNISh 51 +4 Z oD wi(f5 h),
j=1

2 q
(36) If= A DI =W +1+ 5 Z o1+ DS h).
=1

k—1
where the constants a; satisfy the identity (29) and qg[—-—z-—] is a natural number.

Proof. From (33), according to (17), (23) and (24) we obtain (36). From (16),
taking into account (34) and (35), we get the estimate

q 1 q 2 q
T max |P(x)|= -—'[1+ P |a_,|((j+l)"+j"+2)]§l+ﬁ z |aj|(i+l)". O
j=1 fi=1

j=—q 0sxs1 :

The theorem proved is a precized version of the well-known theorem of Ju.
Brudnij [8], considered in [9, 10].

3. A-spline of minimal parameter

If the parameter g of A-spline A4,, is chosen possibly least, namely
k— . . .
q= —2—1 the respective spline is uniquely defined. We will further study this

. k—1
type of splines. For briefness we use the denotation [T]=s'

3. 1. Determining of the constants o;=0o, ;
We will use the following denotations



112 Bl. Sendov

(38) 0, 4x)= e ]_jz xz(xz_lz),..(xz._sz)

=X bl X2 (- DB

and analogously to the function (30)

(39) |//,‘(x)=(x—k%l><x—£—;—3)...<x+ k—;—l>—x"+A

= —a,‘_lx"_2+a,‘_2x"_4— oo +(—' ])sak'sxk—ls+A’

where A is an arbitrary constant.
Lemma 4. The identity

(40) % (i) + (e — 2x5 =Y (0)

j=1
is satisfied if the constants a; are
_=r 02D O)k~29(0). j=1, 2, 3,.... s.
KU+ =t =y o
Proof. Denote by T,(t) the polynomial

(41) aj=a,‘.j=

) 2202 12 22 - [ () (x—jY—2xk
42) T ()=t*(t*—1%)... t*—s ),En( I)J(S+j)!(s—ﬁ!(t2—j2)

of the variable ¢t and depending on the parameter x. The values of T, for
t=I=+1, +2,..., s are respectiv_ely
),(x+l)"+(x Ik —2x*

=D!(s+D!

T () =12 —12)... (F—s*)—1

) 5 [( +D*+(x—DF=2x*].

Therefore the identity holds

(43) T ()= ( _21)’ [(x+ )%+ (x —t)* —2x*].

After the substitution of the values for « ;» defined by (41) in ihe left side of (40)
and using (42) and (43), we get

: ~k _oa (=1y* zn) K — 2i)
jz [ +))* +(x—J); 2xh]_—___k!(s+j)!(s—j)!, : D(O)k = 20(0)
s 1 k! s xk—2!
-G )’,f w0 Y 2)’(k 12 = F o O B
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Note! The expressions (41) for the values of a; can be obtained by solving
the system of linear algebraic equations. This system is got after comparing the
coefficients of the respective degrees of x in the identity (40). For proof briefness,
the solution in Lemma 4 is given in a completely ready form, and is only checked,
that it is the very solution.

From Lemma 4, taking into consideration (38) and (39), we can express the
constants «; by the coefficients of ¥, and 0, ; namely

(44)

o=

Ly, j

=y
h S+N =N =y

z ak.ibi.s-—i/(

k
2

)

Since the coefficients a,; and bl; are positive, from (42) and (43) it

follows, that

(45)

lajl=(—1)Y;; j=1, 2, 3,..., s

3. 2. Some particular formulae
We will present now some particular A-spline for minimal g and k taking
values from 1 to 11.
Considering Table 1, we first assume the constants o, ; for k=1, 2, 3...., 11,
that could be easily determined from (44), using the values of the coefficients from
(38) and (39) which could be easily got using reccurent formulae.

Table 1
j a, j-numerator %
\ 0 1 N 3 4 s denominator
1 1 1
2 1 1
3 8 -1 3
4 34 -5 4!
5 438 -112 13 2.5!
6 11514 -3276 399 236!
7 39232 -14913 3168 -311 3.7
8 937508 -383847 84894 -8521 23.8!
9 927230 -455536 135068 —-24208 2021 (2/3).9!
10| 2030828430 |-1051611000| 322427820 | 58973640 4985805 27.10!
11| 468125040 | -274136634| 101692512 | 25315017 3894504 281085 211!
Table 2
Jj B}-numerator -
denominator
k -5 —4 -3 -2 -1 0
1 -1 1
2 -1 2
3 1 -9 31?2
4 5 -39 (4)?
5 —13 125 —550 2(5')?
6 —399 3675 — 14790 23(6!)?
7 311 — 3479 18081 — 54145 3(7)?
8 8521 —93415 468741 — 1321355 23(8!1)2
9 —2021 26229 — 159276 590604 | —1382766 | (2/3)(9")?
10 — 4985805 63959445 |— 381401460 | 1374038820 |— 3082439430 27(10)?
11 281085 —4175589 29209521 |— 127007529 375829146 |— 742261674 2(111)2
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Taking into account (21), we can immediately get the constants g% for which
k—1
Biii=—p<;5j=01.2,..., s=|—=5—| These constants for k=1, 2, 3,..., 11 are

given in Table 2.

Using Table 2, we can explicitly write A-splines of minimal fi
k=1,2, 3,4,5,6. iy > i

(46) it o
D Avolfs X)=fi+ == A for xelx; Xivy).

(x — x;— h/2)? h h
TAzfi for xe[x;+ 5 xi+1+§)’

2) Azolf; x)=Q1.df; )+

i 1
3) As,(f; )=0Q.4f; X+ ﬁ—;{——(x—xnz)’A’fs-x

+[9(X—xi+1)3f(x”xi)3]A3fs—(X—xi+1)3A3fi+1} for xe€[xi+1, Xi+2)

1
4) A5 x)=Q3; )+ W{_S(x—xi+2_h/2)4A4ﬁ—l
+[39(x—xi+l—h/2)4'—5(x_xi—h/2)4]A4fi_5(x'_xi+l—h/2)4A4ﬂ+1}
for xe[xi+1+h/2, Xis2+h/2),
1
5) As(f; x)=0Q4.4f; x)+ W{l3(x—x,+3)5A5ﬁ_z

H[—125(x —x;43)° +13(x —x;+.4)° 1A -4 +[550(x — X;4 2)° — 125(x — X +1)°
+13(x—x;)% 1A% +[— 125(x — x4 2)° + 13(x—x;41)° A1 41
+ 13(x—vxi+2)5A5fi+ 2}

for xe[xi+2, Xi+3)

1
6) Aef; x)=0s5.f; )+ m{399(x—xi+3_h/2)6A.6ﬁ—2

+[—3675(x — x;4 3 —h/2)® +399(x — x;+ 4 — h/2)® JASf; _ y +[14790(x — x; + » — h/2)®
—3675(x — X141 — h/2)5 +399(x — x; — h/2)°] ASf, + [ — 3675(x — x; 4  — h/2)°
+399(x — X, 1 — h/2)5 1A S 4 1 +399(X — X; 4+ 2 — B/2)PAS; 1 2 }
for xe[x;+2+h/2, x;+3+h/2).
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The general form of the above formulae (46) is

s — . k___
(47) As(fs X)=0,:(f; x)+ Z Pk,j(¥£—Tl)A’ffi+j

ji=-s

for xe x+k;l x+k+1
i 2 4 i 2 »

where the polynomials P, ;= P; are determined from the formulae (9) and (10).
For small values of k, one can compute the exact uniform norms || P, ; |0, 1;
of the polynomials P, ; in the segment [0, 1]. These norms are given in Table 3 for

k=1, 2, 3,..., 11, taking into consideration the obvious equality
(48) ”Pkl -j ”[o,u = ”Pk.j "[0.1] s Jj=1,2,3,..., s
Table 3. Values of ||P, |, ,, accurate to 10~ °.
J
k 0 1 2 3 4 5
1 1
2 0.5
3 0.0625 0.027777
4 0.071180 0.008680
5 0.018010 0.010416 0.000451
6 0.017436 0.005271 0.000095
7 0.003496 0.003319 0.000478 0.000004
8 0.005304 0.001972 0.000161 0.000001
9 0.001076 0.001076 0.000302 0.000011 0.000000
10 0.001807 0.001092 0.000155 0.000003 0.000000
11 0.000353 0.000361 0.000156 0.000014 0.000000 0.000000

3.3. Approximation properties of A-splines of mirimal parameter

For g=s= E—;——l in Theorem 2 for A-splines, there could be estimated the

constants of the respective modulus of smoothness. )
Denote 4, and g, the minimal constants, for which the estimates (49) and (50)

hold

(49) If— Ak NI = AL (f5 h),

(50) 14NN S mh™ o (S5 h).

From (16), (36), (37), Table 1, Table 3, and Theorem 1, we obtain the
following estimates for the constants A, and g, for k=1, 2, 3,..., 11.

According to Table 4 one can assume that

(51) 2 ”Pk.j Il[o_”<i for k=l, 2. 3,...

i=-s

(52) T ol =2 for k=1, 2, 3,...

ji=1
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Table 4.
k A= WS
1 3 1
2 2 1
3 1.7361 1.6667
4 3.4098 1.8334
5 6.0261 3.0834
6 6.0228 3.5521
7 6.0146 5.8657
8 6.0149 6.9185
9 6.0050 11.1990
10 6.0042 13.3836
11 6.0009 21.3083

For the time being we are not able to prove (51), therefore we will give a
certain rough estimate.

Theorem 3. Under the conditions of Theorem 2, the following estimates hold
If— A NI =20 (f; h),
AN = 2*h o (f5 h).

Proof. According to Theorem 2, it is necessary to prove the following two
estimates. .

2
(53) Wit l+ = E logl+10<2"
1o
(54) 1+4 T la; | < 2%
o

Therefore, to establish the inequalities (53) and (54) one needs to estimate the
constants a; and according to (44) the coefficients ay; and bi; of the polynomials
¥, and 0, ; from (39) and (38) should be evaluated.

For k=2s+1

s st )2
e o<os(()(555)

. s . . st )?
since a a,; is a sum of i terms, the biggest is (—S—_l)i .

For, k=2s+2, we get in the same way, that

_ s s+ D!t N _[/s\( s+
oo o<aus(]) (mmrim) 5() 6T

On the other hand, for j=1, 2, 3,...,s

s s! 2
(57) 0<b£.i§b§.i=a23+l.i§(i)((?‘:5i> ;
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From (44), taking into consideration (55) — (57) and the formula of Sterling
n!=n"e""/2nne’'?; 0<O<1 for k=2s+1 we obtain

W (2s\ 2 ( s \&f25+1
£ i G (2) £, () )
Jns e”‘s( 2s ) ( s )4 (28+l)
= %w e \w2a) s )
Taking into account that
Y S s Y. 5
JV2/ns2 §([s/2]>§e””\/2/7z52

from (58) we get

(59) Iak‘j|§21{es(2s+l)( 2s )S< 2s)

ny2s  \s—j/T \s—j
and still
k 2s 1
> . _<_22.!—2_ Zs—l__‘
]=1|a,u|_ (s)<2 2
Therefore
k
(60) 144 T o ;| S22 1 =2k

j=1

In the same way we prove the estimate (60) for k=2s+ 2, as well. Thus the
inequality (54) is proved.
To prove the inequality (53) considering (59), we should estimate the sum

(61) D=L % | |('+1)*s-1-§. 25 )G+ 1
TP T A

We will get the estimate (61) for k=2s+1 only, since the estimate for
k=2s+2 can be obtained in the same way.
Using the formula of Stirling, we get

R V) N il ) 5

<
(62) Di=357 =1 GHN s—))! k!

e ( (1/s+j/s)? )’ j+1 e (e)"
= T + X2/
= w2s+1) ;2 \(L+/3) A —=j/) ) Js4j)s—))  Jms\2

Since according to Table 4, the inequality (53) is valid for k<11, then we
could consider s=5.
It can be directly calculated that
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(0.2 +1)?
(l +l)] +x(1 —t)‘ =

From (62) and (63) we have for s=5

s—1 e [e\* 1
< 23+1< k
(64 D"=(2n(2s+1) \/ns( ))2 002"

wherefrom the inequality (53) holds. J

4
(63) =0.48023 < pe for te[0, 1].

4. A-splines of parameters g, multiple of the minimal

k—1 :
We consider A-splines A4 (f) for which g=ps, s=[T] where p is a

natural number. To obtain the unique solution for the constants o, ; we assume
(65) o, j=0 for those j, that are not multiple of p.

Then in the conditions for determining the constants o, ; only the constants
. p.j =0 p; Will be used.

From (29) it follows that to determine the constants one should use the
identity

(66) T oyp i [(X+pi)* +(x — pif —2x* 1= @y(x).

j=1

where ¢, is got from (30).
Denote 0, ; the polynomial

1
(67) Os.p.; (x)= WXZ(XZ‘PZ)(XZ—“PZ)-u (x*—s%p?)
=x2—bl{x** 24+ ... +(—1)b2]
In an absolutely analogous way to Lemma 4, the following assertion is

proved:
The identity (66) is satisfied if the values of constants o, ,; are

1)t
9 o= p“k'is+;)'(s—j)v. RO )
* . . J-

From (67) it can be seen that
(69) b?i=p*bi,; i=1, 2, 3,..., s
From (68) and (69) it follows directly that

(—l)j : ak.ib:.,s—i

a = -
k.p.j (s+j)!(s—j)!.-=1pzl(k>
2i

(70)
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Taking into consideration (58), (64) and (70), we get the following estimates

1/ 2s
71 < —
( ) 'ak.p.jl.— pz (S —]),
s 2k
(72) 144 Z |y, ;1S1+ =,
j=1 p
2 : k -2
(73) Wit 1+ 5 Il @i +1) <(2py2
Yi=1

Thus we obtain

Theorem 4. Under the conditions of Theorem 2, the estimates (74) and (75)
are valid.

(74) If= Ak p NI S2PY 200 (f5 ).
(75) IAE,s DI =+ 2*p~ ) h ™  w, (5 h).

From (75) it is obvious that the coefficient preceding h ~*w,(f ; h) could be got
arbitrarily close to 1, if the parameter p is chosen sufficiently big.
On the basis of the estimate (75) we can state the following

Assumption. At k=3 there does not exist an operator defined for the
functions with a bounded k-th modulus of smoothness on the real axis, for which
P{(f) exists almost everywhere and the following estimates hold

I f=PNI=Coo(f; h),
1PN Sh *w(f; h),

where C, is a constant depending only on k.

It is evident that the constants preceding h~*w,(f; h) can not be less than 1.

4.1. Some particular formulae

In Table 5 and Table 6 the values of the constants «, , ; and B, , ; for k=3, 4,
5, 6 are given. Let note that for k=1, k=2 it is senseless to take q#d since it does
not lead to approvement in the approximate properties of the respective spline.

Table 5.
J d, , jsnumerator &G s
k 0 : ) denominator
3 6p>+ 2 -1 3t p?
4 24 pz +10 -5 4! p2
5 240 p* + 150 p* +48 —80p%—32 5p+ 8 2.5!p*
6 5760 p* + 4200 p* + 1554 —2240p*—1036 140 p + 259 8.6!p*
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Table 6.
J B., -numerator Beps
denominator
k -2 —1 0
3 1 —6p2—3 (3!)2 pz
4 5 —24 pg-— 15 (41)? p?
5 —~5p*—8 85p%+40 —240 p*—230 p> —80 2(5")? p*
6 — 140 p?—259 2380 p? + 1295 — 5760 p* — 6440 p> — 2590 8(6!)? p*

The values of o, ; for k=7, 8, 9 are :
37! pSay ., = —7560p* —5733p% — 1620
37! p%a,,,.» =756p* + 1764p> + 648
37! p®ay .3 = —56p*—147p* —108
88! pSag,, , = —181440p* _ 153972p% — 48435
88! pSag ,, =18144p* +47376p> + 19374
88! p®ug , 3 = — 1344p* —3948p% — 3229

Z9!,;%:9 . = —161280p° — 177632p* —95120p% — 21504
3 Py

-§-9 ! p®to, .2 =20160p + 61516p* + 42640p? + 10750

%9 ! pPag p.3 = —2560p° —8736p* —9840p* — 3072

%9 ! pBag .4 = 180p® +637p* + 820p? + 384.

5. A-spline in a finite segment

Since A-splines are defined only by the values of the approximated function
at the knots, when defining an A-spline of a function given in a finite segment, this
function should be extended on an infinite uniform net. Let the function f be given
on the finite interval [a, b] and the uniform net in this interval

Xo=a, Xy =a+h,..., x,=a+nh=>b; h=(b—a)/n.

We consider the infinite uniform net {x for which x ;xo+ih yi=+1, +£2,...
We extended the function f on this infinite net in tfle following way
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fi=0k- 1.5 x;) for i=0, —1, 2,...

(76) [i=0k-1.a-ilf5 X;) for i=n, n+1, n+2,...

From the extention (76) altogether f, #/f (a) and f, #f (b), but this fact is not of
considerable significance. Surely f; =f(x;) fori=1, 2, 3,..., n— 1. The choice of the
continuation (76) provides the opportunity of applying Theorem 1.
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