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1. Introduction and statement of results

Let A= —-A+x be the Harmonic Oscillator, considered as a self-adjoint
operator in L?(R"), n=1, and let e(4,x,y) be the spectral function of A4. If
0<A,<A,<...are the elgenvalues of A and {¢,} are the corresponding
orthonormalized eigenfunctions (Hermit’s functions), then

e(;»,X, y)= z (pk(x) (pk(y)-'

AkS4A

In this paper we find a complete asymptotic of the function e(4,x,x) as
A— + o0, which is uniform with respect to parameter xeR". In particular, the
parameter x may tend to infinity together with A arbitrarily.

To explain the main idea better we consider at first the more simple problem,
concerning the asymptotic behaviour of the function N(4)= X 1, which is

AkSA

continuous from the right. The Laplace transform, o(p)= | e *dN (1), is
holomorphic on the right halfplane Rep >0 and, what is more, a(p?)=(2 shp)™. In
order to use the reconversion Laplace formula, we note that

e —1 a(p)

=[e **N,(Ad4,
h 0

h
where N, (1) =% { N(A+pdy, h>0. Consequently (more details see below),
o

e+in/2
NW=-—""[ e*c(p)H@A+np)dp, e>0,
2"':—1’1:/2
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124 G. E. Karadzhov

where the function s— H (s, p) is 2-periodic and H (s,p)=e"* "7 (shp) ! if 0<s<2.
Further, the function p—e*? ¢ (p) H(4+n,p) is i n-periodic with a pole at the
point p=0, so the residue formula is applicable and gives

(1) N@A)= Z a;,(A)A"7J, |aj|< const,
j=0
where, for example, ao,(4)=1/2"n!, ay,())=h(A+n)/2"(n—1)!, and the function
h is 2-periodic, h(s)=1—s if 0=<s<2 (the formula (1) is obvious if n=1).

The results for the spectral function e(4,x,x) are analogous but more
complicated. It is convenient to write down the asymptotic of the function

E(Ax)=e(A /A%, /2X), A—+o0.

Theorem 1. (the case | x> —1|<3). There exists a positive number & such that
E(ALx)= = 2"%[a;(A,x) A7 +bjn(A,x) AT P+ cjp (A, x) 4777 23),
j=o0
uniformly with respect to parameter x, where
ajn ()'1 x) = ajn (/1’ x)j;l (12/3 g (x))9
bjn (A X)=bu (2, %) [ (32 g (x)),
CinlAy X)=Cjn (4, %) [ (A*1 g (X)),

and the functions @;,, bj,, Cj» are bounded,
2. n
G X)=(21) "V, [" '] %
g(x)

1+n —n
bon (A, x)=—(2m)"" V,,[:;ﬂ] 4 |x|'T h, (A+n,x),

—1
& —(omy=n Vn g(x) Par 1-n X212
el En) g-(_)-c—){[xl_l] [x| hz(l+n,x)—[———g(x)] },

V, being the volume of the unit ball in R". The functions s—h,(s,x), k=1, 2, are
2-periodic and

hy(s,x)=(x2—1)""2sh[(1—s)arsh \/x*—1], 0=s<2,

hy(s,x)=ch[(1 —s)arsh \/x*—1], 0=<s<2.
The function geC*® and

2/3
g(x)=(%) [Ix]/x*—1 — arsh \/x*—1]*3>0 if x*>1,



A Complete Asymptotic of the Spectral Function... 125

3 2/3
g(x)=_(§) [Ix]/1=x* — arsin \/1-x2}>3 <0 if x2<1.

Finally,
+-‘_00 e—i(az+z3/3) dZ

e

fr(s)= [ 6"* Ai(c +s)do, where Ai(a)=21—n
[}

is the Airy function. The following recurrence relations are satisfied:

L) = =2 (+f12 (), n22,
fo©)=[ Ai(@)do,

fi(©)=2"3n {—4" 1P s[Ai (413 52 4 [AV 4~ 1P ).
Corollary 1. If x2=1, then
E(4x)=Z 2"%[aja(A) A7 +bjn(A)A7I71B3 4 ¢, (A) A7I7213),
j=0

where

Qon (1) = (27!) " Vn f;. (0)7

bon()=Cm) ™"V, by (1) fu- 2 O),

3
Con(A)=2m)"" V, [hy(A+n)— E("+ D] fa+2(0).
The functions -h,(s), k=3, 4, are 2-periodic and

1
hy(s)=1-s, h4(s)=5(1 —5)? is 0<s<2.
The numbers f,(0)= | ¢™* Ai(c)do are positive and can be expressed by the
o

1 n+1 1 n—1 1
— - am3-12 h 2
1,0 2n3 I"( 6 +2)l"< 3 +2).

Theorem 2. (the case x>*<1—46). If A— + oo, then

gamma-function:

E(,x)=Z aj,(A,x)A"27,
j=0

i=
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uniformly with respect to parameter x, where the coefficients a;, are bounded and

Aon (l,x)=(27t)_" Vn(l _x2)n/2’ a1n=bln+clm

bin(30)=(2m) " V, (1 =X} Zhy (A-+),

c,,,(A,x)=%(2n)"" [ I—(xw)] ' hs(A+n,ixw)do.

lwl=1

The function s—hs(s, A, x w) is 2-periodic and

hs(s, A, x w)=sin[A(arcos xw—x \/1—(xa))2——ng+ (1—s)arcosxw] if 0<s<2.
(1-x?"1

S hs(+1,4,%).

In particular, ¢y, =

n—1
Corollary 2. If 0<8,<x?><1—6 and n22, then c,(4,x)=0(A" "27), so in
this case, aj,=bq,.

Remark 1. Let us consider the spectral function e(4, x,x) in the classical
case, when x2< const. Then we have the following uniform asymptotic as
a consequence of theorem 2:

2 e(A,x,x)=2mn)"" V,,[A"/z+g z a,,,(l,x))."/z'j/z:l,
j=1

j=

where the functions a;, are bounded and
aln=0, a3n=0a aZn('L x)=h3 (1+n)+h5 (l+na 190)_x2’
3) a;2x(4,0)=0 if j>2k.
Theorem 3. (the case x*=1+90). If A— o0, then

E(Ax)=exp[—A(|x|/x*—1—arch|x]|)]  a;(4,x)A~ "7,
j=0

uniformly with respect to parameter x, where the coefficients a;, are bounded and

+n 3+n 1-n

oy ()= (1)~ T (P —1)" | x[ T hg (At 1, ).

The function s—hg (s, x) is 2-periodic and

he(s,x)=exp[(1 —s)arch|x|] if 0=s<2.
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2. Proof of theorem 1

First of all we establish the following basic formula :
1 co+i1:/2
4) e(l,x,x)=—2—7? [ e*V(p,x)H(A+n,p)dp, £,>0,

eo—in/Z

p=¢,+it, where s— H (s, p) is a 2-periodic function, H (s, p) =€ ~9?/shp if 0<s <2,
and V(p,x) is the Laplace transform of the spectral function, V(p,x)

=j e *”de(4,x,x), so it is holomorphic on the right halfplane Rep>0. The
fur?ction V may be expressed explicitly. We have (see, for example, [2]):

5 V(p+ikn,x)=e*" V(p, x), keZ,

and
V(p, x)= (2 sh 2p) "2 e~ *hp if —g< Imp gg,

Rep >0, with the main value for the radical.
I V(p, . .
To prove (4) we note that [ e *?e(4,x,x)d ,1=Lx)- Since the function

o
A—e(4,Xx,Xx) is continuous only from the right, we pass to its continuous average :
1 h
e,,(,l,x,x)=z [ e(A+ux,x)dpu, h>0.
[}

Evidently, e, (4,x,x)—e(4,x,x) if h—+0 for every fixed (4,x), and

e""—1 V(p,x)
h p>

e *e,(Ax,x)dA= h>0, Rep>0.
o

By the reconversion Laplace formula we conclude that

1 %t e 1 V(p,x)
e N e

zo—-mo

dp, £,>0,

(the integral is absolutely summable). Using the periodicity relation (5) and the
Weierstrass convergence theorem, we get

£ +in/2 _ 0
(6) et = [ e V(pxBP=00D
ZTE £~ in/2 h
iskn
where g(s,p)=e”f(s+A+n,p) and f(s,p)=Z (p%;)i « The confinnous fanction

s—f (s, p) is 2-periodic and f(s,p)=e"' "9?(cthp—1+s)/shp if 0<s<2, Rep >0.
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g(h,p)—g(0,p)
h

theorem is ap;:lfczgle. So the formula (4) follows from (6).
For proving of theorem 1 we start from the formula

Consequently, lim =H(A+n,p) and the Lebesgue convergence

g+ in/2 .
(7) E(4,x)= >mi | eMr " (27 sh2p)~% H (A+n, p)dp.
£y~ in/2
Let ¢ (p,®)=p—(1 + ) th p, where a=x?—1. This function has two critical points
p+ = tarsh \/;, which degenerate if a =0. (We take always the main value of the
radical.) Since 92 ¢ (0,0)=0, 95 ¢ (0,0)=2, 02, ¢ (0,0) =1, there exists (see [1, lemma

23) a holomorpphic change of variables p=p(z,a), p(0,a)=0, defined in some

neighborhood of the point z=0, a=0, such that

) @ (p,0)=—B(@)z+2%/3,

2/3 2
where B(a)-—-(%) larch /1+a—/1+a./a]** and B(a)=a——g5—+0(a3).
BeC®. The inversion holomorphic function z=z(p,a) is fixed by the choice

z(e,0)>0 if €>0. Then z(ps,0)=+ /B(a).
To use (8) we note that

) E(4, x)~§% [e*®(2nsh 2p)""2 H (A+n,p)dp,
Y

where y is the segment [g,(1—i), & (1 +i)], & being sufficiently small, and the
equivalence “a(4,x)~b(4,x)” means that a(4,x)—b(4, x)=0(e" %), ¢>0.
Indeed,

1+a sh 2e

——, P=¢+it,
2 chle—sinit’ P +

Reo(p,a)=¢—

therefore,
Reg(etie,a)SC(g)<0if 0<e=<eg,, |a|<T (g) and if the numbers &, and I'(go)
are sufficiently small. )

Further, using the change of variables (8) in the integral (9), we see that

(10) E(A,x)~ [ e "Bz+=23) z=n2~1 g (z,a) dz,

y"

where the function

1 [2rsh2p(z,a
=g (A2

-n/2
) p'(z,2)zH (A+n,p(z,0)),
2mi
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is holomorphic in a neighborhood of y*, the oriented curve y*=(z,,z,) is the
image of y by the conformal mapping p—z(p,a), and y* < {z :Rez>0},
argz,e(—mn/2, —mn/6), argz,e(n/6, n/2).

Now, to find the uniform asymptotic evaluation of the integral (10) as
A— 400, we apply the Weierstrass preparation theorem [3]:

(11) q(z,0)=To(0)+T, (@) z+T, (@) 22 +z(z2— B(2)) q, (z, ®).
An integration by parts in (10) gives the relation

(12) E(A,x)~ [ e} Bz+=23 z=m2-1 (P 4 T z4T,z%)dz+R,
y.

where
1
R=R(4,x)=7 | X020 270271 g, (z,0)dz,

Y

and the function g, (z,a)=§ql(z,a)—zaqu(z,az) is holomorphic in a neigh-

borhood of y*.
The first integral in (12) can be expressed by the Airy function. To this end we
note that

Al(s)=L +J’m e_‘("’+”’/3)dp=L ‘}o e—sz+:3/3dz
2n — 0 2mi —ioo ’

therefore, by the Cauchy formula,

. 1 —SzZ+2z
Al(s)=2—n;j'e *2B T=y,U7,,

r

where .
Y1 :z=pe%, pe(+,0), ¢,e(—n/2, —n/6),
Y, :z=pe'®, pe(0, + o), @,e(n/6, n/2).
Let '
I,‘(l,x)=j' el(—n(u)z+z3/3)z—n/2—l+kdz’ k=0, l,
),.
Since

a0
z7"2 " l=g "2y, | o¢"?e °*do, Rez >0,
o

it is not hard to see that

n k n
LA X)~(— 1) n "2 V,2niis "3 | a2 Ai®(c+A**B)do.

o= 8
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To compute the coefficients I'y, I';, I',, in (11) we use the formulas :

Lo (@)=q(0,a), r,(a)=—2—‘\/—§[q(\/§,a)—q(— JB.a),

1
I, (@) =3504(/B.0)+q(~/B,%)—24 (0,2

On the other hand, p’'(0,a)=B/a and consequently,

ro(a)=%in—../zz_,,[§;i)]—../z-

Further,

p(+ /B(®),x)= + arsh /o, p’ (£ \/E,a)=(§>”4(l +o)l/4

and therefore,

1+n

q(+ ﬁ,a):zlt—imn)‘"/z (g)T(l tay T (+ VBH(A+n, + arsh /).

Finally,

1+n

1 B\
rl(a)=m(4n)‘"’2(g) Y (140

3tn 1-n n/2
Fz(oz)=2—7lt——i(4n)—"/2—;§[<§) P l4a)E h2(1+n,a)—<%)/ ]

where the functions s—h, (s, &), k=1, 2 are 2-periodic and h, (s,0)=a""?sh[(1 —s)
arsh /a], h,=ch[(1—s)arsh/a] if 0<s<2.
Evidently Theorem 1 follows to within a bound of the rest R(4,x) in (12).

Now we shall briefly explain how to estimate this rest. By iteration we may
suppose that

1—-n

4 hy(A+n,a),

R(l,x)=l'"’ 1 ." el(-Bz+z3/3)z—n/2— 1 q)v(z, oz)dz,
v.
where gy (z, ) is a holomorphic function in a neighborhood of y* and the natural
number N is sufficiently large.

1* case n=2k. Using the Taylor formula and the bound (2.17) from [1] we
obtain as before that
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k ”
(13) R(A,x)~A" N1 % ,1"/6—1'/3_/:‘1)(,12/3 B)

j=0

+O(A™N"1) (A7 13| AN (223 B)|+ A7 3| AT (2 B))).

On the other hand, the function f, satisfies the equation f7,"(s)—sf", (s)+§ f,(5)=0

from which it follows that

(14) /7 OISCA+IsP ) ULG T+ 2@ +If a6, j=3.

Having in mind the relation f° ZETD (s)=(—1)** 1 k! Ai(s), one derives the estimate

of the rest from (13), (14).

2™ case n=2k+ 1. The formula (13) is fulfilled again, but in the right hand
side the Airy function Ai(s) must be replaced by the function

g(S)=J. ei(4l/33(+13/3) tl/Z dt=C0nSt Ai (S) Ai ,(S).

The functions g and g’ havci separating zeros and the arguments from [1, p. 348]
remain valid. Finally, fo. > (s)=const.g(s).

3. Proof of theorem 2

The main idea consists of transforming of the formula (4) so that the method
of the stationary phase could be aplicable. Roughly speaking, we shall pass to the
limit as ¢,—0. An obstacle to this are the singularities at the points p=0,
p= +in/2. These singularities can be decomposed as follows :

V(p, x)=(47[sh p)_"je_'fz/“cthpﬁxéd &, Rep >0,
and

h2p\ 2 s
V(p,x)=(2n)-"V~(szpp> pe ¥ [ e""a"*do.
V]

On the other hand, to avoid the critical points on the boundary Imp = i—g, we

note that the function f(p)=e*” V(p,x)H (A+n,p) is in-periodic, therefore

1 1
e(4,x, x)=4—n—i£x(p)f(p) dp+—2—n~ifxz (p)f(p)dp,

where I' is the segment [e,—im, ey+in], xeCg (I') is im-periodic function,
x(p)=x(p), x=0 near the zero, x(p)=1 if 0<d,<Imp <n—4, ans y,=1—y.
Thus

e().,ﬁx, \/Ix)~e1 (4, x)+e, (4, ),
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where the equivalence “a(4,x)~b(4,x)” here means that |a(4,x)—b(4,x)
<CyA~N, and

e,(Lx)= [ [e*®q,(4t0,w)dtdodw,

lo|=1
2

o
(p(t,a)=t+—4—ctgt—xw.a,

n/2

ypn (@misint)™"H (A+n,it) x (it) "~ ! % (0),

ql (A, t’ a, CD)=

the function »eCg [0,0), x=1 in a neighborhood of zero,
e, (A, x)=[e"*"q,(4,t,0)dt do,
Y(t,o)=t(1—o0)—x>tgt,

sin 2t
2t

4y (A, t,0)=A"2+ 1 (2m)t " V,,( )'7 itH (A+ n, it) x, (it) 2 % (o).

Now we may apply the method of the stationary phase. Not going into
details, we only note that the critical points are nondegenerated, so the reasons
are standard.

The formulas (2), (3) can be proved by the arguments from the introduction.

4. Proof of theorem 3

We use the formula (7). Since x2=1+ 6> 1 the phase function ¢ (p, x)=p—x?
thp has one sadle g)oint po=arch|x|. Putting ¢,=p, we see that Req(p,x)
<Re@(py,x)< —C(0)<0 and therefore the function E(4,x) is exponentially
small. To find its asymptotic, uniformly with respect to parameter x, where
x2=1+9, 6>0, we shall apply the sadle-point method. Since the critical point p,
is nondegenerated uniformly by the parameter x,x?>>1+J, we can prove that
there exists a holomorphic change of variables p=y (w,Xx), defined in some

neighborhood |w|<C ./, such that
w2
@ (P, X) =@ (o, )= ——, ¥ (0,x)=po,
(15)
0% Y (w,x)|SC(k,8) if x*=1+46, 6>0.

Here and later on all estimates are uniform with respect to parameter x, where
x2=1496, 6>0.
If U is the image of the circle |w|<C \/5 by the mapping p =y (w, x), we have

(16) (P:1p—Pol £C,/3}cUc {p:|Ip—pol<C,./5},
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and

(17 Re (o (P, X) =@ (po, X)) = —p, (6) <0,

where p;=¢,+it; and y,=(p,,p,) is the segment U N (¢o—in/2,e,+im/2).
To ‘establish (15) we use the Taylor formula as usually :

@ (P, X)— @ (Po» X)=(p— o) g (x, P),

g(x,p)=[(1—5)0; ¢ (po+s(p—po)) ds,
0

and note that Reg(x, p)>0 if Re p>0, |Impl<g, x2=1+4. So we may consider

the holomorphic function w=(p—p,)/ —2g(x, p). To find the inversion mapping,
we solve the equation :

F(p’w’x)=(p_p0)\/ ——2g(x,p)—w=0, F(povo’x)=09

The bound lgf‘gca”‘ is obtained by wusing the relation |g|=Reg
p
1
=[(1—s)Re " (po+5(p—po))ds and the estimates :
o

Re ¢” (p,x)2 C, \/‘i
10,0 (P, x)|=C, if |p—pol £C /6.

1
So the solution p=y (w, x) exists and |d,, ¥ (w, x)| <C 6~ 4. The other estimates in
(15) are analogous.

Now from the formulas (7), (15), (18), (17) we get

E(3,x)=¢* @0 [ ¢4 (1,1 (w, )Y’ (w, x) dw+0 (e~ 4.,

where

1
f(4,p) =%(27t sh2p) ™2 H(A+n,p) and the oriented curve y5=(w,,w,) is the

image of the segment y,=(p,,p,) by the conformal mapping p=y (w,x). In
particular,

2
Lud

Re— =Re (¢ (po, X)— @ (p;, x)) 2 p,(6)>0.
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Further we follow the reasons on p. 170 [1]. Note only that w= —t./2g(x, p)
p—po=it, so 2tx" V2 (x2—1)"#40(t?), and, on the other hand,

l,l/ 0,x)=—i2" l’zlxl”z(x —1)" 14,
Thus theorem 3 is proved.
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