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An Archimedean Riesz space is called a super SM P-space if the Boolean ring #,(L) of all its principal
projection bands is super order dense in the lattice .o/, (L) of its principal bands. A characterization of
super SM P-spaces is given and some results are generalized on these spaces.

0. Introduction

Let L be a Riesz space. L is said to have sufficiently many projections (L is
an SMP-space) if every nonzero band in L contains a nonzero projection band
([5). If L is Archimedean, the Boolean ring %#,(L) of all principal projection
bands of L is order dense in the lattice o/, (L) olP all principal bands of L iff L is
an SM P-space ([3]). Following the usual terminology an Archimedean Riesz space
with %, (L) super order dense in < ,(L) will be called a super SMP-space. The
family of all super SMP-spaces contains all Riesz spaces with the principal
projection property. In this paper we will characterize super SMP-spaces and
extend some results (for example, Egoroff type theorem) on this family. For
terminology concerning Riesz spaces we refer the reader to [5], [7] and [2].

1. Characterizations

Let X be a distributive lattice with the smallest element 0. The subset D < X is
said to be (super) order dense in X if for every x>0, xeX, there exists an
increasing net (sequence) of elements y.eD such that sup y,=x (abbreviated

Ve Tx).

Let now L be an Archimedean Riesz space. If M is a Riesz subspace of L,
then M is (super) order dense in L ([2], 14F) if M * is (super) order dense in L.
Recall that L is said to be an SMP-space if the Boolean algebra # (L) of all its
projection bands is order dense in the Boolean algebra o/ (L) of all bands in L. As
shown in [3] the order denseness of #,(L) in &/ (L) is necessary and sufficient for
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L to be an SM P-space. This result is based on the following lemma. For the sake
of convenience we give a short proof.

Lemma 1.1. (Jakubik) Let Be# (L) be contained in the principal band {f}%
generated by feL™*. Then B is a principal projection band generated by the
component fg of f in B.

Proof. Since {fz}?<= B we have to prove only the inclusion {fz}*<=B’. To
this end let 0=<ve{fy} and let v, denote the component of v in B. The inequalities

0<fAvp=< sup{weB:0sw< f}=fy

shows that O0< fAvy<fyAv=0, thus vge{f}?nB={0}. Hence veB? as we
claimed.

To simplify the notation we propose the following definition. An
Archimedean Riesz space L is said to be a super SMP-space if #,(L) is super
order dense in o/ ,(L).

In order to characterize super SM P-spaces we will need the next result, which
can be proved by standard arguments, using Lemma 1.1.

Lemma 1.2. Let A be a band in L, (B, :t€T) an upward directed net of band
projections in L such that B,<= A for all TeT, and let S be a complete system of
positive elements in A. Then B,T A in o/ (L) if and only if fg 1f for all feS.

It is easy to see that an Archimedean Riesz space L has sufficiently many
projections if and only if the cone P of its projection elements (i. e. elements fe L
satisfying {f}€#,(L)) is order dense in L *. A similar characterization holds for
super SM P-spaces.

Proposition 1.3. In an Archimedean Riesz space L the following conditions are
equivalent.
(i) The cone P of projection elements of L is super order dense in L*.
(i) L is a super SMP-space.

Proof. It follows easily from Lemma 1.2. that (i) implies (ii). For the reverse
implication use also Lemma 1.1.

Corollary 1.4. Let eeL ™ be a weak (order) unit in L and let A", denotes the
Riesz subspace of L generated by the Boolean algebra #,={Pe:P a band
projection on L}. If A, is super order dense in L, then L is a super SMP-space.

Proof. For any ueL* take an increasing sequence p,e.#", such that p, T u.

Put B,={p,}*, observe that according to Lemma 1.1. B,e#(L), uz Tu and
therefore by Lemma 1.2. B, 1 {u}*. O "

Remark. It can be shown, that A", is super order dense in L if and only if
L is a super SM P-space.

Any Riesz space with the principal projection property is obviously a super
SMP-space. If the Boolean algebra # (L) is o-Dedekind complete, then the
converse holds too.

Theorem 1.5. If a super SMP-space L has o-Dedekind complete Boolean
algebra % (L), then L has the principal projection property. In a uniformly complete
Archimedean Riesz space L the following statements are equivalent:

(i) L is super SMP-space with o-Dedekind complete algebra % (L).
(ii) L is o-Dedekind complete.
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Proof. Assume that L is a super SMP-space, ueL ™, and let B, be an
increasing sequence of projection bands in L such that B, {u}* in 2/ (L), i.e,
(UBy"={u}*. 1f #(L) is o-Dedekind complete, there exists B=sup{B,

::teN}egB(L). We claim, that B=(| ) B,)*, and the conclusion of the first part of

the theorem follows. If this is not the case, there exists a nonzero positive element
veB() ([ BY), and a nontrivial projection band B, < {v}*. Then B,< B()Bj

holds for all neN, and we get the contradiction B < B (| B§ & B (since ve B\BY).

The second part of the theorem is a consequence of the first part and
Theorems 42.5, 30.6 of [5]. O

The preceding theorem is a o-analogue of [5], Thm. 30.6.

For further discussion we recall some notions. A lattice X is said to have the
o-interpolation property if whenever the increasing sequence x, and the decreasing
sequence y, in X are such that x, <y, for all n, then there exists an element ze X
satisfying x,<z<y, for all n. An Archimedean Riesz space L is called an
SF-space, if any two disjoint elements of L are contained in disjoint projection
bands. In every SF-space the following strong form of Freudenthal’s spectral
theorem holds ([4], Thm. 3.8). For every ueL * each fe A, (A, is the principal ideal
generated by u) can be wu-uniformly approximated by elements of the Riesz
subspace .4, generated by the Boolean algebra #,. Since every SF-space is
normal ([4]), a uniformly complete SF-space has the o-interpolation property.
Thus, we can expect an interpolation property which characterizes uniformly
complete SF-spaces. We shall say that L has the interpolation property (S), if for
any ueL * and sequences f,, g, in L * satisfying f,1 <g,land f,A(u—g,)=0 for
all n, there exists heZ, such that f,1 <h<g,|.

Proposition 1.6. Let L be a uniformly complete Archimedean Riesz space.
Then the following conditions are equivalent:

(1) L has the interpolation property (S).
(i) L is an SF-space.

Proof. (i)=(ii). If f,geL™* are disjoint, then the constant sequences f,=f,
g.=¢, and u=f+g satisfy the conditions of (S). Hence fe#, and therefore (ii)
holds. (ii)=>(i). Let ue L * and let the sequences f,,g, in L * satisfy the conditions
fi1 9,1, fuh(u—g,)=0 for all n. Since L is uniformly complete, there. exist

u-uniform limits f=X27% f,, g=X27%g,. It follows that 0<f<g<u, and

1 1
- fA(u—g)=0, therefore by (ii) there exists a band projection P such that Pf= f and
P(u—g)=0. It is easy to see that h = Pu fulfils the condition f, 1 <h<g, |, and the
proof is complete. [
We are prepared now for the next result.

Theorem 1.7. Let L be an Archimedean Riesz space. Consider the following
two statements:
(i) L is a super SMP-space with (L) possessing the o-interpolation property.
(i) L is an SF-space.
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Then (i) implies (ii). If in addition L is uniformly complete with a weak unit, then the
conditions are equivalent.

Proof. (i) =(ii). Let u,veL * and uAv=0. Choose the increasing sequences

,C,e# (L) such that B, T {u}*, C,1{v}*, set D,=C4 and note that D, | {v}? in
.9/ (L) Since {u}*c {v}" there exists by (i) a projection band B such that
{u}**=Bc<{v}*. Thus ueB, veB’ and (ii) follows.

Assume now that eeL * is a weak unit in a uniformly complete SF-space L.
Then the Riesz subspace A", is uniformly dense in A4,, hence super order dense
in L. By Corollary 1.4. L is a super SM P-space. In order to show that Z (L) has
the o-interpolation property assume that the sequences B, and C, of projection
bands in L satisfy the condition B,T <C,|. Set f, =ep, gn=¢c,> observe that
fi1<9.1, fuA(g,—g,)=0 for all n, and use Proposition 1.6. to get an element
heg” such that f,T <h=<g,|. Since evidently heZ,, it follows easily that
B= {h}""ega(L) and B,cBcC, for all n. [1

Remark. Ifa unlformly complete Archimedean Riesz space L has a weak
unit ee L * such that every component of e is contained in 2, (for example, if e is
a topological weak unit in a Banach lattice or a ring unit in an Archimedean
f-algebra), then the following condition is equivalent to (i) and (ii) of Theorem 1.7.
(iii) The Kakutani representation space K of A, is totally disconnected and £ (L)
has the o-interpolation property.

Theorem 1.7. generalizes a part of Theorem A in [6].

2. Egoroff theorem

Now we turn our attention to the Egoroff property. Recall that a distributive
lattice X with the smallest element O is said to have the Egoroff property, if for
every element xeX and any double sequence y,; in X such that y,, T, x there
exists a sequence z,, in X such that z,, T x and that for every m and n there exists
k =k (m, n) satisfying z,, <y, (the latter property is usually denoted by z,, <y, ).
A Riesz space L is said to have the Egoroff property if its positive cone L *
possesses the Egoroff property.

We shall generalize now Theorem 74.2. of [5].

Theorem 2.1. Let L be a super SMP-space with the Egoroff property. Then
the Boolean ring %,(L) has the Egoroff property.

Proof. Let B={u}*e#,(L), ueL*, and let the double sequence
B, €#,(L) satisfy B,, T, B. Denote by u the component of u in B, ,. Observe
that by Lemma 1.1. B,,,‘— {un, 1%, and by [5], Thm. 30.5 u, 1 e Since L has the
Egoroff property, there exists an increasing sequence u,, in L * such that u,, tu
and u, <u,, for all m. For every m take an increasing sequence (B, : ieN) in
4, (L) which satisfies By, T, {u,,}*’. We may assume that B}, increases in m for any
fixed i. Since for every m,n there exists k(m,n) such that u,,<u, m.n> We have

B, =Bnc {“m}“ < {Un (m.»)}‘M = Bk m.m)

and therefore B,,« B, for every m. To finish the proof we will show that B, T B.
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Since B,, is increasing by construction, it is enough to see that u, Tu.
Suppose that 0Sw=u—uy holds for all m. It follows that for band projecfions
Pi, on B, "

u—Pf,.umgu—u,,mng holds for all i,m
thus
u—u,=u—sup {Phu, ieN}=w holds for all m

and consequently w=0. [
Our next result extends an abstract Egoroff type theorem [5], Thm. 74.3 on
super SM P-spaces.

Proposition 2.2. Let L be a super SMP-space with #,(L) possessing the
Egoroff property. Let ecL * be a projection element and u, a sequence in L * such
that u, | 0. Then there exists a sequence e,, of projection elements in L satisfying
O<e,Teand P,u, - 0 e-uniformly for all m, where P, denotes the band projection
on {e,}".

Proof. Set e,,=(u,—(1/n)e)”, note that the relation 0<e,, T,(1/n)e holds
for all n, and take sequences (B, :ieN) in % ,(L) such that

B:.l.k T i {en.k}dd, n, kGN, Bil.k T K N, ieN.

Put B, ,=B;}* and denote by P,, the band projection on B, ;. It is not hard to
show that P,,e?1,eand B, , 1, B. By assumption #,(L) has the Egoroff property,
hence there exists an increasing sequence B, in #,(L) such that B, 1B and
B,, < B, x ;m.m fOr appropriate k (m, n). Using the relation B, ;, = {e, ,}* we can show
easily that P, uymna<(1/n)e, where P, denotes the band projection on B,,.
Therefore P, u, <(1/n)e holds for all k> k(m,n), hence P, u, 2 0 e-uniformly for
all m. Put now e, =P, e, and the proof is finished. (J

In super SM P-spaces with the Egoroff property the previous result holds for
all positive elements. The details follow.

Theorem 2.3. Let L be a super SM P-space with the Egoroff property, ec L *
and u, |0 in L. Then there exists an increasing sequence of projection elements
€,€L ™" such that e, 1e and P, u, |, O e-uniformly for allm, where P,, is the band
projection on {e, }*.

Proof In the same way as in the proof of the preceding theorem we get the
double sequence B,,e#,(L) such that B,, 1, {e}* (or P,,e?1,e). Choose now
a sequence f, in L * satisfying f, 1 e and f,,« P, e for all m. Next, take sequences
(Bn :ieN), meN, in 2,(L) such that

B;Ti{fm.}ddv mGN, B:.'IT”I’ iEN'

It follows that B, =B, satisfies B,, T {e}%. Since
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P, Uy mm=(1/n)e and P, u,=(1/n)e for all k=k(m,n)

we have P, u,|,0 e-uniformly, as we claimed. O

3. Examples

Let K be a completely regular Hausdorff topological space. Denote by % (K)
the Riesz space of all real continuous functions on K. Recall that a subset Z< K is
called a zero set, if it is a null set of some fe% (K). A subset C of K is said to be
a cozero set, if its complement K\C is a zero set. Let us describe super
SMP-spaces of the type é(K) by topological properties of K.

Proposition 3.1. The following conditions are equivalent :
(1) €(K) is a super SMP-space.
(ii) For any cozero subset C =K there exists a countable family W, of open and
closed subsets of C such that cl(| ) W,)=cl(C).

Proof. (i)=(ii). Let C>= {xeK : f(x)>0}, fe€™ (K), be an arbitrary cozero
set. For every neN take an increasing sequence (B, : keN) of projection bands in
% (K) such that ‘

Bui T {(f—(1/m) 10"}

Each B, is generated by a characteristic function of an open and closed set W, .
Observe that () W,, is dense in the cozero set which corresponds to

k
(f—(1/n)1)*, hence the diagonal sequence W,=W, , satisfies (ii).
(i)=>(i). Let fe¥* (K), C={xeK :f(x)>0}, and let h, be the characteristic
functions of the open and closed sets W, satisfying (ii). It follows that

B,= % {h}¥e®,(%(K)) and B,1{f}*. O
1

k=

Example 3.2. Let K be the union of two concentric circles C, and C, in
the complex plane C. The projection z—z/2 of C, onto C, will be denoted by p.
The topology on K is given by a neighbourhood system {# (z) :zeK} as follows.
B (z)={{z}} for zeC, and

#(2)={U, () :neN}, zeC;, where U,(2)=V,@Up(V,(I\{z})

and V, is the arc of C, with centre at z and of length 1/n. The space K is called the
Alexandroff double circle (see [1], 3.1.26.) and is compact and Hausdorff. Since
every cozero set C = K intersects C, (hence, contains an isolated point of K), € (K)
is a SMP-space. To see that it is not a super SMP-space consider the function
fe€(K), f:z— (Rez)*, and observe that its cozero set does not satisfies condition
(ii) of Proposition 3.1. It can be seen easily that K is not totally disconnected.
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Example 3.3. Let J be the closed subspace of the Alexandroff double circle
K consisting of C, and of points ze C, satisfying arg ze[0, 2n)( Q. It is easy to see
that € (J) is a super SM P-space. We claim that it is not totally disconnected. For if
we can separate different points u,ve C, with disjoint open and closed sets W,, W,,
we get two disjoint open and closed subsets C,(\W, and C,(\W, of the circle C,
(with usual topology). But this is a contradiction.

Example 3.4. The space c of real convergent sequences is isomorphic to
% (K), K={1/n:neN}( J{O} =R, thus by Proposition 3.1 a super SMP-space
(since K is totally disconnected). It can be shown that ¢ has the Egoroff property,
hence it satisfies the conditions of Thm. 2.1 and Thm. 2.3, although it does not
have the principal projection property (Compare with [5], Thm. 74.2).
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