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Introduction

The inner product [+,+] of a Krein space ) can also be considered as
a duality. Since #" has a natural strong topology, one can consider the duality of
two different subspaces of ", regarded as Banach spaces. This is what we mean
by strong duality ; if no topology is taken into account, as in [3, L.§ 10], then we
refer to weak duality.

For the case of Pontryagin spaces, two neutral subspaces .# and 4" are
called skew linked (see [6], [2]) if they are in duality (strong or weak, this is the
same in this case). In this situation one can decompose the space " as follows

H=M+H+N,

where X is a regular subspace of . This proved to be a useful instrument in the
analysis of operators. In the case of a Krein space, if # and 4" are two neutral
subspaces in strong duality then the above decomposition also holds (e. g. this was
used in [5)).

A “special” kind of the construction described above is the situation when
A is a neutral subspace and # =J.A4" where J is a fundamental symmetry of
A" (beginning with [7] this was intensively used in the literature). In this paper we
show that this is the typical case, more precisely (see theorem 2.4), if .# and A" are
two neutral subspaces in strong duality then there exists a fundamental symmetry
J of A such that A =JN.

Our proof uses certain duality operators that we investigate in the second
section. Then we are interested in getting an explicit formula for the fundamental
symmetry which maps .# onto ./, in terms of angular operators. In order to do
so, in the third section we relate the duality operators with the angular operators
of two maximal non-negative subspaces and then, in the fourth section, we obtain
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such a formula for the fundamental symmetry obtained in the proof of theorem
2.4.

The problem we considered in this paper is equivalent with solving a certain
non-linear operatorial equation. Once we obtained a solution for this equation, in
the last section we can find a parametrization of all solutions (see corollary 5.2).

§1. In this section we fix some terminology and notation to be used in this
paper. )

Let (X, [+,*]) be a (complex) Krein space. If J is a fundamental
symmetry (shortly f.s.) of # and J=J* —J" is its Jordan decomposition then
A=A +H" is the corresponding fundamental decomposition
(shortly f.d.) of #. The J-inner product

(x, ¥);=1Ix, y], X, yex’,

determines the corresponding unitary norm |- |.

Thestrong topology on J is determined by an arbitrary unitary norm.
Asubspace & of A is by definition a closed linear manifold of #". We denote
by

Pr={xeX; [x,y]=0, ye&}

the orihogonal companion of &. The subspace & is called regular if
P +% =A holds. Non-negative subspaces, maximal non-negative
subspaces or neutral subspaces are used with the usual meaning.

Throughout this paper the involution * will be used only with respect to
a positive definite inner product associated to a f.s. J which will be fixed in
advance or will be clear from the context. Also, the term linear contraction
will be used only with respect to some unitary norm.

We will use the following fact, which can be proved either by using a f.s. or
by observing that in the corresponding proposition in the Hilbert space context
the positive definiteness plays no role.

1.1. Proposition. Let .# and A" be subspaces of the Krein space X . Then
M+ N is a subspace if and only if M+t s a subspace.

§2. Let ¥, and %, be two subspaces of the Krein space (X, [+, *]). We fix
on " a unitary norm || « || and denote by (-, *) the corresponding positive definite
inner product. Consider the Hilbert spaces (&;,(*,*)), i=1, 2. For any xe %, the

mapping
‘2’2 3y— [y’ X]

is a bounded linear form on %, hence the Riesz representation theorem implies
the existence of a bounded linear operator T,e%(%,,%,) such that

2.1) [x, y]=(T, x, y), xe&,,ye&,.

Denote
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2.2) P )=IT,xl=sup |[x,y]l, xeZ,.

yeLy
lIyllst

Then p, is a semi-norm on %, and if the non-negative inner product {+,*), on
&, is defined by

(23) <x’y>l=(T: Tl x,y)! x’yegla

then p, is exactly the semi-norm associated with {+,*>, i.e.

(2.4 Py (0)=(Kx,x>)'"%,  xeZ,.
Moreover,
(2.5) kerp,=ker T, =2, %5 .

Similarly, there exists a bounded linear operator T, =T €% (£ ,, &) such that
(2.6) ' [x, y]=(x, T, ), xe?,, ye¥,,

and the non-negative inner product on %,
2.7 6y, =(T3T,x,y)=(T, Tix,y), x,yeZ,,

gives rise to a semi-norm

(2.8) p2(x)=I Ty x||= sup |[x,y]l, xe#,,
iyi<h
which satisfies

(2.9) ker p,=ker T,= %, <} .
From (2.2) and (2.8) it is clear that T; are contractions, or equivalently
(2.10) piX) =1, xe¥,, i=1, 2,

in particular the topology induced by p; on &, is weaker than the strong topology.

2.1. Proposition. The following statements are equivalent :

(i) The semi-norm p; on &, is equivalent with the unitary norm lell,i=1,2.

(i) T, (or equivalently, T,=T7) is boundedly invertible.

(i) £,(.L.=0 and L, + L=

(iv) £, L:=0 and L, +L,=X.

Proof. (i)=(ii) Taking account of (2.10) it follows that the statement (i) is
equivalent with the existence of >0 such that
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(211) a“xllépl(x)’ x6$~, l=19 2

But (2.11) for i=1 means that T, is one-to-one and has closed range while the
same inequality for i=2 yields T,=T7] one-to-one, hence T, has dense range.

(il)=>(iii) If T, is boundedly invertible then &, (<&, =0 follows from (2.5).
Let now zeX be arbitrary. Considering the linear form

-723)"’[)’, Z]
we get a vector te.#, such that

[y,z]=(y,t), yeyr

Taking z,=T; 'te ¥, by (2.1) it follows that

. z1=b, 2], ye<&,,

hence z,=z—2z,€%,. Thus we have proved &, +$‘£ =X.

(ii)=(@iv) If £, Sfé =0 holds then, considering the orthogonal comple-
ment, it follows. that the linear manifold &, + .711 is dense in #". From
L+ fé =" we first obtain &, ﬂfl’ﬁ =0 and then by proposition 1.1 it follows
that 5?2+.,Sf’ll is closed, hence &,+ %=X

(iv)=>(i) Let P, be the projection of " onto . , along .Yi By assumption P,
is bounded hence for any xe.¥;, we have

[x|l=sup |[x,ylls sup [[x,ylISIP;l"py(x).

R ye&s
IyI=IPal

We have to remark now that by proving (iii)=>(iv) we proved also (iv)=>(iii)

interchange the roles of ¥, and %,). Thus (2.11) holds with

a=min {1/|| P, |, 1/ P, I},

where P, denotes the projection of )" onto £, along Zﬁ (of course, the case
#,=%,=0 should be treated separately). ®

2.2. Definition. The subspaces ¥, and %, are in strong duality with
respect to the inner product [ +, «], or equivalently, &, and &, formastrongly
dual pair, if one (hence all) of the statements from proposition 2.1 is (are)
satisfied.

Clearly, strong duality of subspaces does not depend on the particular
unitary norm that we considered, it depends only on the strong topology of X"
Also, if #, and Z, are two subspaces in strong duality then their dimensions (as
Hilbert spaces) coincide. The subspaces ., and &, form a strongly dual pair if

and only if .Z’ll and .‘l’i form a strongly dual pair.
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If the subspaces %, and %, are in strong duality then they are also in weak
duality. If ¥, and &, are either of finite dimension or of finite codimension then
their strong duality is equivalent with their weak duality.

Let ? be a subspace of . Then & is a regular subspace if and only if % is
in strong duality with itself. In connection with this fact we note that if
¥ =% =%, then the operator T, defined at (2.1) is the Gram operator of the
inner product space (&, [+, ]) with respect to the positive definite inner product
(+,°).

2.3. Example. Let J be a f.s. of the Krein space &#" and A4 an arbitrary
subspace. Then A" and J A" form a strongly dual pair of subspaces. Here we want
to point out that, in general, strongly dual pairs of subspaces are not of this kind.

If # is a maximal uniformly positive subspace of #" and 4" is an arbitrary
maximal non-negative subspace then ./lﬂﬂ‘l =0 and M + N QX (e.g., by [1,
Corollary 1.5.2]). But if A" is degenerate then .# #J.A" for any f.s. J of K, since
J# is always maximal uniformly positive.

2.4. Theorem. Let ¥ and £, be two neutral subspaces of the Krein space A .
The following statements are equivalent:

(a) &, and &, are in strong duality.

(b) L+ Z, (the algebraic sum) is a regular subspace.

(c) There exists a f.s. S of K such that & ,=S% | (or, equivalently, ¥ ,=S%,).

Proof. (a)=(b) Assume that the neutral subspaces .#, and %, are in strong
duality. From proposition 2.1 we have _‘flﬂ.s,"i:.fzﬂ.?i:O and

(2.12) L AL =L+ L=

‘Since &, Q.fll, from (2.12) we get .Sfll +$§ =", hence by proposition 1.1 it
follows that &, + %, is closed. On the other hand, from (2.12) it is easy to derive
the equality

(2.13) L=+ (2

hence
(2.14) L+ L+ LN L=,

which shows that the subspace ¥, +.%, is regular.

(b)=(a). If &, +.%, is a regular subspace then the representation (2.14) holds
and from here it follows easily (2.13), hence ,Tzﬂ,‘l"%=0 holds and using once
more (2.14) we get £, + L, =4, i.e. ¥, and &, form a strogly dual pair.

(b)=>(c). Let the subspace ¥ =.¢,+.%, be regular. From above we know
that ¢, and &, are in strong duality, in particular the operators T, and T,
defined at (2.1) and (2.6) are boundedly invertible. We define a linear operator
G on & by
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0 Tt
(2.15) G=[T2_l 0‘ ] W.It. =L +%,.
On % we consider a positive definite inner product {+,- ) defined by
(2.16) <x;+x,5, ¥ +Y,0=Lx1, Y101 +<{X3, V202, x;, Vi€ZL,, i=1, 2,

where the positive definite inner products ¢+, );, i=1, 2 are defined at (2.3) and
(2.7). The corresponding norm is

s(xy +x3)=(p; (x,)*+p, (x5))'3, x €%, i=1, 2.
%, and &, are orthogonal with respect to the inner product {+,+) and the

operator G is continuous with respect to s, or equivalently to | «|.
Let x,,y,€%, and x,, y,€%, be arbitrary. Then

CG(xy+x2), y1+y)=KT3'x;+T1 ' X3, y,+ 2>
=T %, YD1 +<T 3 X, y20,=(TIT T 3, y)H(T3 T2 T3 ' Xy, p)
=(T1x5, ) +H(T3xy, ) =[x2, yi]+[xy, yal =[x+ x5, ¥, + ],
which means
(2.17) {(Gx, y>=[x,y], x, ye&,

hence G is the Gram operator of the inner product space (&, [, ]) with respect
to {+,+). In particular, G is a selfadjoint operator on the Hilbert space (&,

Cou0))
With respect to the Hilbert spaces (&;, {+,*)), i=1, 2 we consider the left
polar decompositions
T '=U,|T ", i=1, 2.

Then it is easy to see that

o U, IT;1 0
G= =1
u, 0 0 | T

is the left polar decomposition of G with respect to the Hilbert space (&, (+,* ).

Denote
0 U | T3 0
S= 1, 1G|= )
I:Uz 0] | [O T
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Then, (2.17) can be written
(S|Glx, y>=I[x,yl, x, ye&,

and since G, hence also |G|, are boundedly invertible on & it follows that S is
af.s. of the Krein space (Z,[+,*]). Also £,=S%, and S can be extended to a f.s.
of . 1m

(c)=>(a) Obvious.

§3. Let A ="+~ be a f.d. of the Krein space ¥ and ¥, and &, two
maximal non-negative subspaces of /. We let K, and respectively K, denote the
angular operators of the subspaces ¥, and %, with respect to this f.d..
Recall that for i=1, 2, K;,e £ (A *, & 7) is the unique linear contraction satisfying

(3.1) ZLi={x+K;x|xexXx*}.
Then, recall also
(32) F=(y+Kiylyex "}, =12

The next lemma is a result from [2, Theorem 1.8.15]. We give a short proof.

3.1.Lemma. The maximal non-negative subspaces ¥, and &, are in strong
duality if and only if the operator 1,—K3K, (or, equivalently, the operator
I_—K,K3) is invertible in & (X ") (respectively, in & (X 7)).

Proof. Let us consider the linear operator Xe % (#) defined by

I, K

Lt A =H" -
K, I_:Iwrt AT+

(3.3) X =|:

From (3.1) and (3.2) follow Elﬂ,fé=J ker X and &, +.§,’§=§2(X), where J is
the f.s. associated to the f.d. X" =%+~ and 2 (X) denotes the range of X.
Taking account of Proposition 2.1 (iii), from here we infer that £, and &, are in
strong duality if and only if X is invertible in % (). But from the factorization

1+ K3 [1.—-K3K, 0 I, K,
(34) X"[o I ] [0 I_ 0 EL

it follows that X is invertible in . (X) if and only if I, — K3 K, is invertible in
LH").m

We consider now the operators T, and T, defined at (2.1) and (2.6) and we
want to calculate these operators in terms of the angular operators K, and K,.

3.2. Proposition. Let ¥, and ¥, be two maximal non-negative subspaces of
A" and K, and respectively K, their angular operators. An operator T.el(X)is
an extension of the operator T\e £ (¥, ¥,) defined at (2.1) if and only if it has
the following block-matrix representation
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(3.5) le[(1++K;K2)—1(I+_K;K1)—F1K1 Fl]

K,(I,+K3K,)"'I,—K3K)-T, K, T,
where T, e L (K ~, A ") and T,e L (X ) are arbitrary.
Proof. Let T,e.#(K) be an extension of T, i.e. T,|%,=T,. This means

(3.6) T, 4,2,
and
(37) (Tl X,‘y)=[x, y]7 xegl’ yegz’

where (+,+) denotes the positive definite inner product corresponding to the f.d.
A =4+ +4 . Let us consider the block-matrix representation of T,

A B RN
(3.8) T"I:c D] Wrt =X+,

From (3.6) we get
C+DK,=K,(A+BK),)
and then from (3.7) it follows
(3.9 (A+BK,)=(I,+K3K,)"'(I,—K3K,),

hence denoting I'; =B and I',=D we obtain the formula (3.5). ®

3.3. Corollary. With the notation from proposition 3.2, the operator T,e& (X)
is an extension of the operator T, defined at (2.6) if and only if it has the following
block-matrix representation

I, +Ki{K,)"'(U,—K1K,;)—A K, A,
(3.10) Tz = * -1 * ’
K,(I,+K1K,) '(I,—K1K))—A,K, A,
where A, e L (H ~, X ) and A,e £ (K ") are arbitrary.

34. Remark. Let us consider the notation from proposition 3.2. The
operators T, and T, are related by the identity T%=T,, so it is natural to ask if
there exists any extension of T, such that its adjoint is an extension of T,.
A straightforward calculation shows that if T, €% () is represented by (3.5) then

* is an extension of T, if and only if

(3.11) ,=0,—K3K)(I,+KiK,) 'K{—K3T,.

3.5. Remark. Assume that the maximal non-negative subspaces ¢, and &,
are in strong duality. Then, from proposition 2.1 (ii) we know that T, is invertible.
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Let T, be an extension of T, and assume that T, is also invertible (in & (X")).
Then T;! is an extension of the operator Tj!.

In order to prove this let K, and K, be the angular operators of ¥, and
respectively .#,. From lemma 3.1 we know that I, —K3 K, is invertible in
L (A ‘% If T, is represented by (3.8) then from (3.9) it follows that ’T’l £, =%,
hence T;! is an extension of Ty!.

§4. Let ¥, and .#, be two neutral subspaces of the Krein space J#". Assuming
that &, and %, are in strong duality then, it follows from the theorem 2.4(b) that
L.+ &, is a regular subspace, hence we can suppose, without restricting the
generality, that ¥, + %, =2¢". Then, it is easy to see that YL, =%,i=1,21e. &,
and ¥, are hypermaximal neutral subspaces of X (cf. [3]). If
H =H"+H" isafixed f.d. and K, and K, denote the angular operators of £,
and respectively .#,, with respect to this f.d., then K, and K, are unitary
operators, in the sense K; K;=1,, K;K;i=I1_, i=1, 2. Also, from lemma 3.1 we
know that the operators I, —K1K,, I,—K3K,e% (¥ ") and I_—K,K3,
I_—K,KieZ (A ") are all invertible.

Consider now the operator G defined at (2.15) and denote F=G !, i.e.

0 T
F=[Tl 02] WLt X =% +%,,

in particular F is an extension of both T, and T,. Taking account of proposition
3.2 and corollary 3.3, it follows by simple calculations that, representing F as in
(3.5), we must have

1 * *
F1=§(K1+K2), I,=-1_,

hence
I, — SKIHKY)
4.1) F= v W.r.t. X=X+ ".
%(K1+K2) —I_

Now the block-matrix representation of G with respect to the f.d. ¥ ="+ ¢~
can be calculated quite easy (e. g. using a factorization of F similar to that used in
(3.4)) but since the formula is a bit longer and we will not use it, we leave this to
the reader.

Further, according to the proof of the theorem 2.4, we have to consider the
positive definite inner product {-,+ )

<x,y>=(JFx,y), X, yeX’,
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where J is the f.s. corresponding to the f.d. ¥ ="+~ and (-,*) is the
positive definite inner product determined by J. The polar decomposition of
G with respect to the Hilbert space (o, {+,+)) will produce a f.s. S such that
S¥,=%,. But, doing so, we encounter the obstruction of calculating
a square-root. However, we can find an explicit formula for S, using a geometric
reasoning as follows.

The block-matrix representation of the f.s. § is

(1+ —K* K)—I/Z —K*(]_ —KK*)—I/Z

K(I,—K*K)~ ' —(1__1<1<*)—m] WLt =T+ AT,

42) S= [

(e.g. see [4, Proposition 4.5)), where K is the angular operator of the maximal
uniformly positive subspace S *. On the other hand, the f.s. S is also produced
by the polar decomposition of F with respect to the Hilbert space (X", {+,*)).
Since, from (4.1), the geometric interpretation of F is Jt}at it changes the
coordinates # =X * + 2~ into the coordinates X =.# + .# , where .# =G (K)
with

(4.3) K=%(Kl +K,),

this suggests that S)# * =.#. Inserting K given at (4.3) in (4.4), and taking
account of

1 * * 1 *
(44 I —K*K=7(Ki—K)(K,—K)=7(, ~K3K) (. ~KiK)

1
=20 —KiK)U, —K3K)),

and similarly

l * * 1 * *
(45) I —KK*=3(K,—K)(Ki—K3)=2(_ —K,K){I-—K,K3)

l * *
=Z(1—_K1KZ)(I——K2K1),

we get
21K, —K,|™! —(K}+K3|K;—K3|!
(4.6) S=|:| 1 2| » ( :+ f)l_,l 2| ]
(K, +K,) K, —K,| —|K1—K3|
Y

w.r.t. X=X Y+~
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Before starting to prove that the operator S given at (4.6) is indeed the f.s.
produced by the polar decomposition of F, let us recall the well-known “defect
relations”

KU, —-K*K)">=(I_—-KK*)"*K, K*(I_—KK*'2=(1, —K*K)!2 K*,
which in our case yield, via (4.4) and (4.5), the following identities
4.7 (K, +K,) K, —K,|"'=|K]=K3|"" (K +K)),
(4.8) (KT1+K3)IKTI—K3|™'=|K;—K,|"" (K1 +K3).
Now, S is isometric with respect to the inner product (-, ) if and only if
(4.9) S* JFS=JF.

Since S is a symmetry in the Krein space ), i.e. JS*J=S8"'=S it follows that
(4.9) is equivalent with

(4.10) FS=SF.

Making use of (4.7) and (4.8) the proof of (4.10) is immediate. Also, in order to
prove that SF is positive with respect to the inner product {+,+ ) we must prove _
that JFSF is positive with respect to (+,+). But, a direct calculation gives

21K, —K,| — 1K, — K, |(K1+K3)
—IK1—K3I (K, +K)  2|K{—K3|

>

JFSF=[ ] wW.r.t. X=X+

hence, the positivity of JFSF is equivalent with the positivity of the following
operator

1 =
ZIK?—KEI—EIKT—KZI(Kx+Kz)|K1—Kzl 'K, — K, |(KT+K3)

* 1 * * l * *
=2IKT—K2I[1-—Z(K1+Kz)(l<n+K2)]=§IK1—K2I3’2,

which is clear.
From what we have proved above and from the proof of the implication
(b)=>(c) in theorem 2.4 we conclude that the f.s. S given at (4.6) satisfies S¥, = Z,.
§5. In this section we continue to keep the notation and the assumptions
considered in section four. It is easy to see that the f.s. S given in the block
representation (4.2) satisfies S.¢, =.%, if and only if the following identity holds

(5.1) K,(I,—K*K)""2(I, —K*K,)=(I_—KK*)~">(K—K,).
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Thus, the problem of finding the f.s. which maps ¥, onto .#, is equivalent with
the problem of solving the operatorial non-linear equation (5.1), where the
solutions Ke & (# *, A ~) are required to be uniform contractions, i.e. | K| <1.
In the course of the preceding section we found a solution of the equation (5.1),
this is the arithmetic mean of the unitary operators K, and K, (see (4.3)), provided
that the hypermaximal subspaces ¥, and %, are in strong duality.

We are now interested in finding all the solutions of the equation (5.1), or
equivalently in describing all the f.s. S which maps #, onto .£,. From theorem
2.4 it follows that we can choose the f.s. J, which was fixed at the beginning of
section four, such that J.%, =.%,. Assuming this it follows K, = — K,. Denoting
U=K,=—K,. Ue& (X", A7) unitary operator, the equation (5.1) becomes

(52) U(I,—K*K)"Y3(K*—U*U=(I_—KK*) "2(K—U).

In the following, we use the convention : if 4, Be & (), s Hilbert space,
then we write A>B if A=B and A—B is invertible in Z (5f).

5.1. Proposition. Let Ue & (A", A ) be unitary operator. Then, the identity
(5.3) K=AU

establishes a bijective correspondence between the class of all solutions of equation
(5.2) and the class of operators A€ ¥ (X ~) such that —I1_<A<I_.

Proof Let KeZ (X", #7), | K| <1 be a solution of (5.2). Using the defect
relations for K it follows that

(5.4) U(I—-K*K) '2(K*+U*U=(I—-KK*) '*(K+U)
also holds. Subtracting (5.3) from (5.4) we get

(5.5) U(I,—K*K) " '?=(_—KK*™'?2U
and using this in (5.2) we obtain

(5.6) UK*=KU*.

Let us denote A=KU*e.Z (A ~), equivalently K=AU. Using this in (5.6) it
follows A= A* and since K is uniform contraction it follows that 4 is a uniform
contraction, hence —I_<A<I_.

Conversely, let Ae.Z (4 ") be such that —I _<A<I_ and set K=AU. Then
K is a uniform contraction and

(5.7) (I, —K*K)\2=U*(I_—A?'?U,
(5.8) (I —KK*'Y2=(I_— A%,

Using these identities it follows immediately that K is a solution of (5.2). m
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5.2. Corollary. Let the hypermaximal neutral subspaces &£, and &£, be in
duality and, via theorem 2.4, assume the f.s. J satisfies J.¥ =% ,. Considering the
fid. A =H*+H " associated to this f.s. let U be the angular operator of £,.
Then, the formula

U*(I_—AZ)—I/ZU *U*A(I—Az)_l/z
59) S= ~ i
¢ |:A(1_—A2)’”2U —(I_— A%~ 12 ] Wrt X =Xt +H

establishes a bijective correspondence between the class of all f.s. S mapping £,
onto ¥, and the class of operators Ae¥ (A ~) such that —I_<A<I _.

Proof. This is a consequence of (4.2), proposition 5.1 and the identities (5.7)
and (5.8). m

' 53 Remark. Clearly, an equivalent parametrization of the solutions of (5.2)
is obtained by means of the formula

K=UB,
where Be & (X %) satisfies —I, <B<I,.

54. Remark. Let us come back to the original setting (i.e. we do not
assume J.&, =.%,). In this case we still can describe a rich set of solutions for the
equation (5.1), but, in general, this is not the set of all solutions. In order to do
this, let us assume # =" =4 " (since # " and & ~ are unitary equivalent this
is no restriction). Then the angular operatore K,, K,€.% () are unitary and
K, —K, is invertible. It is easy to verify that for any Ae % (), such that 0<A <1
and AK;=K;A, i=1, 2 the operator

(5.10) K=AK,+(I—-A)K, ;
is a solution of (5.1). From what was proved in section four it follows that the f.s.
obtained in the proof of theorem 2.4 corresponds to the choice A=1/21.
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