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B-Splines with Birkhoff Knots .
Applications in tke Approximations and
Shape-Preserving Interpolation

Rumen K. Uluchev

Presented by BIl. Sendov

We extend some classical results from the spline functions theory to the case of polynomial splines
having Birkhoff type of knots.

1. Preliminaries

We start with some basic definitions from [3], [10]. Let X={x;}T,
X, < ... <X, and E={e;}7'1 j=o be an incidence matrix (E consists of 0’s and I’s
only). By m, we mean the set of polynomials with real coefficients of degree at most
r. It is said that the matrix E satisfies:
(i) Polya condition, if M, :=X Ze;2k+1, k=0,...,r—1;

~Cij=
jsk i

(i) Strong Polya condition, if M,>k+1, k=0,...,r—2.

The matrix E isconservative if it does not contain odd supported blocks
of 1I's. The pair (X, E) is regular (s-regular), if E is conservative and
satisfies Polya condition (resp., Strong Polya condition).

Definition 1.1. Let (X, E) be a regular pair and |E| :=‘Z] e;j, |[E|=r+1. The

linear functional

(1.1) D(X,E); f1:= £ a;fP(x)

ejj= 1
satisfying the conditions
D[(X,E);9]=0  for o(x)=x*  k=0,...,r—1,
{D[(X,E);<P]=1 Jor  @px)=x"
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is said to be divided difference of the function f at (X, E). Denote by

X,
( the matrix of coefficients of the linear system (1.2) with respect to {a;;}.

E)
,r

Since [ ] is exactly the transposed matrix for the Birkhoff interpolation
m

proble
p(j)(xi)=09 eij=l9 penr

(()X’ EZ-]#O, it follows that the
conditions (1.2) uniquely define the functional (1’.1).,

It is not difficult to prove the next properties (see [3]).

Property 1.1. D[(X, E); f] coincides with the coefficient of x" in the
polynomial pen, such that p?@(x)=fY(x,) for e;=1.

and by the Atkinson-Sharma theorem [2] det

Property 1.2. If the pair (X, E) is s-regular then

a;;#0 if e;j=1 and i=1 or i=m

We call the knot (x,, 4) of a given pair (X, E) first, ife;;=1 and e;;=0 for j> A.
Similarly, the knot (x,,,u) is said to be last of (X, E), if e,,,=1 and e,,;=0 for
j>u. Both the first and the last knots of (X, E) are said to be end knots.

To remove a knot (x,,4) from a given pair (X, E) it means to obtain a
new pair (X', E’) such that

XI_{X={x,. T, if Zie;>1,
§X 10 ois Xy 14 Xpted s o wu 5K} if e =1,
E'={e};},

Definition 1.2. Let (X, E) be a regular pair with |E|=r+ 1. The function

Ey= { 0, if (i,j)=(,4),

e otherwise.

(1.3) B((X,E);t) :=D[(X,E);(c— o) 'I/r—1)!

is said to be a polynomial B-spline of degree r—1 with knots at
(X, E).

The function (1.3) preserve the fundamental properties of the wusual
polynomial B-splines. The next assertion follows from Theorem 7.1.b and
Theorem 7.13, [10]; see also [7].

Property 1.3. Let the pair (X, E) be s-regular and |E|=r+1. Then
B((X,E);)=0  for  t¢[x,,x,],
B((X,E);t)>0 for te(x,, x,,).
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Remark 1.1. The Property 1.3 holds under weaker assumptions : the pair
(X, E) to be regular and the two pairs obtained from (X, E) removing the first knot
and the last knot to be regular too. Then instead of Property 1.2 we state a;;#0
only for the coefficients {a;;} corresponding to the two end knots of the pair (X, E).

Given two positive integers r,L and a pair (X,E), x,<...<X,,
E={e;}"3-0, |E|=r+L we define a (r+1) -partition of (X,E) as a
sequence of pairs {(X;, E)}} obtained in the following way. Let us order the
elements of E in the manner e, g,...,€1,,—15--+»€m.0s---»€mr—1 and number the 1’s
in this sequence from 1 tor+L. Let e e ,,,,...,€, be the rows of E containing
r+ 1 consequtive 1’s starting with the i-th one. Suppose the first row € , contains v
I's and €, contains u 1’s of this (r+ 1)-sample. We denote by X the set of knots
Xp<...<X, and by E; the matrix composed from €piie i€ in which all 1’s in the
sequences €,,...,€p ,~1 and e,o,...,€, ., €xcept the first v, respectively u, are
replaced by O’s.

We say that the (r+ 1)-partition {(X;,E)}} of (X,E) is s-regular if all
(X;,E), i=1,...,L are s-regular.

Having in mind Remark 1.1 we introduce other kinds of regularity to get
more general results. We shall make use of the next notations. By (X, E),, (X, E),,
(X, E) we mean the pairs obtained from (X, E), |E|=r+ 1 removing the first, the
last, both the end knots, respectively.

Definition 1.3. The pair (X, E), |E|=r+1 is said to be
(i) Good regular (or G-regular), if (X, E), (X, E)o, (X, E), are all regular ;
(ii) Strong Good regular (or SG-regular),if (X, E), (X, E),, (X, E),, (X, E)
are all regular.

Definition 1.4. We say that the (r+ 1)%artition {(X;,E)}f of (X,E) is
G-regular (SG-regular) if all (X,;,E), i=1,...,L are G-regular (resp.,
SG-regular).

The next assertions are proved for a s-regular (r + 1)-partition, but they hold
for G-regular one too. So, let a G-regular (r+ 1)-partition {(X;,E)}; of a pair
(X, E) be given. Then {B((X;, E);°)}; form a basis in the linear space S,_, (X, E) of
spline functions

r—1

(1.4) s)= Z a;t'+ T b;(x;—ty
) i=0 €= 1
The Variation Diminution and Extended Total Positivity of the B-splines (1.3) are
proved in [3].

In Sections 2-4 we study some approximating properties of the splines from
S,_,(X,E). A scheme for local spline approximation of functions feC,

(1.5) SO=Z;cif(t) BUX, E);t)=:V (1)
is offered, extending the Schoenberg’s variation diminishing spline for particular

c;eR and t,esupp B((X;, E;) ;°). We prove that the splines V', converge uniformly
on [a,b] to f when max {|x;+1 — Xl :xj,xjHeX}—»O and | E |- co. Estimations for
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the quantity dist (f';S,-; (X, E)) are given. Note that the splines from S,_; (X, E)
may be considered as splines having multiple knots with the constraints some of
the coefficients of {(x;—t)% '/} to be set zeros.

In Section 5 we consider the problem of existence, uniqueness and
characterization of a smooth function solving given Birkhoff interpolation
problem with minimal L ,norm (1<p<oo) under restrictions on the r-th
derivative.

2. Expansion of the unity in B-splines with Birkhoff knots

In this section we normalize the B-splines (1.3), so that they sum up to 1. To
this end we prove a recurrence relation for the divided differences (1.1).

Theorem 2.1. Let (X, E) be given SG-regular pair, X ={x;}7, x, < ... <X,
E={e;}I"y j=0, |[E|=r+1. Then

(2.1 D[(X,E); f1=(D[(X,E)o; f1-D[X,E),; f]/e,

(X, E) [(X,E)

o det[o,...,r—z]det 0,..ir

(X,E)o (X3E)r
det[O,...,r—lJ detlﬁ,....,r—lJ
Proof. Let (x,,4) and (x,,,u) be the end knots of (X, E). Then
D[(X,E) ; fl=ay; f?(x,)+ Za;; fO(x)+ Ay [ (x,,)
(2.3) D[(X,E); f] = Zbi fPX) + by S (x,)

D[(X,E),; f] =Cufm(x1)+Zcijfm(xi)
Everywhere in (2.3) the summation is on é;;=1, E={e ij}i.j- By the Kramer’s
rule it follows from (1.2) and (2.3) that

X, E X,E
B e T e

L (X, E), (X, E)

“"“‘_det[o,...,r—1]/d°t[o,...,r]’
N (X, E) (X, E),

b"“‘_det[o,...,r—z]/det[o,...,r—1 :

X, E X,E),
cu=(=1! det[o,(...,riz]/det[o,(...,r)—1]'

where

(2.2) >0.
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Hence b,,,/am,= —c;;/a,;. Let us define ¢ as follows
(2.4) c=b,,/am,
and set

DIf1:=D((X,E); f1-(DI(X.E); f1-D((X, B),; fIe.
From (2.2), (2.3) and (2.4) we have
D[fl= Z (a;—(biy—cip/c) fO(x).
e..=1 »

u

Observe now, that
2.5) D[p]=0 for @ (x)=x*, k=0,...,r—2

and since (X, E) is regular, (2.5) has only one, the trivial solution. That is D [f1=0
for all functions f, which implies (2.1) provided c#0.
It remains to prove that ¢>0. Let pen, be such that

pY (x)) =S pmy> ej=1, e;;eE.

Then D[(X, E);p]l=apm, is the coefficient of x" in p(x). Remark 1.1 implies
Qm, #0. Assume that a,,<0. Then because of the relation
sign p* (x) =sign a,,,, <0
for sufficiently large x it follows that there exists a X+ 1 > X, With p® (x,, 1) =0.
But Birkhoff interpolation problem
p(j) (xi)=0’ eij= 1’ eUEE’ (‘J)#(mr ”)9
P (Xm+1)=0
is regular and consequently it has a unique solution p(x)=0, a contradiction with
p*(x,)=1. So a,,>0. Similarly b,,>0. The theorem is proved. ®
Definition 2.1. Let (X, E) be given SG-regular pair with |E|=r+1 and ¢ be
defined as in Theorem 2.1. Then the function
N((X,E);t) :=cD[(X,E);(° —t)y ']
issaid tobeanormalized polynomial B-spline of degree r—1 with
knots (X, E).

Theorem 2.2. Suppose {(X;, E)}{*" is a SG-regular (r + 1)-partition of a given
pair (X,E),” |E|=L +2r. Then
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L+1
(26) Z;N;(=1 if tel) suppN,;=:(a,b), N;:=N(X,,E); °).
Proof. Denote by c¢; the normalizing coefficients corresponding to the
B-splines B((X;, E;) ; ©). Fix a subinterval (x;, x;+)<(a,b) and a point te(x;, x;+1).
For some index k we have x;=min {x; : x;€ X; +,} and x;,,=max {x; : x;€ Xs+1}.

Moreover,
k+r k+r
TN@®= = N(= T ¢D[X,E)i(>—17"]
i i=k+1 i=k+1
. "E' [D (X E)os(° =) '1=D[X,, E),;(° —t)¥ 1]]
i=k+1

=D[(Xx+r Ex+r)os(° -7 1=-D[(Xx+1,Exs+ )5 (e =00 1]

=D[(Xi+rs Exsr)os(° =t ' 1=D[(Xis1, Exs1),;0]=1-0=1

since (X, E)o=(X;4+1,Ei+1), and D[(Xy+,, Ex+,)o;(° —t)y 1] is the coefficient of
x"~! in the polynomial p(x)en,_, interpolating (x—t)" ! at (X, +,, Ex +r)os l.e. 1.0
The next corollary gives a dependence of a spline function s on (x;,x;4,) on
the coefficients of the B-splines which support includes the interval (x;,x;. ).
k+r
Corollary 2.1. According to the notations in Theorem 2.1 if s(t)= X o;N;(t)
i=k+1

k+r

and te(x;,xj+1)= Ql supp N; then
iz
min {4 g, W, ) SSEO)SMAX {Cht 1,000 0 sy}

3. Approximation of a smooth function by splines from the
space S,_; (X, E)

Let {(X;,E)}i*" be a SG-regular (r+ 1)-partition of a given pair (X, E) with
|E|=L +2r. Henceforth by N; we mean the i-th normalized B-spline
N((X;,E);°). Using (2.6) we now naturally extend some estimations from [5],

Chapter XII.
Suppose that £; is an arbitrary point from supp N;, i=1,...,L +r. Consider
the spline operator

L+1

A :Clapy—S,-1 (X, E), [a,b] := () suppN,,

i=r

defined by
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L
A;():=Z f(E)N; (), te[a, b).
i=1

Fix a point {€(xj,x;+,)<[a,b]. Then for some integer k we have

k+r
A;8)= X f(E)N.(),
i=k+1
and (2.6) implies
k+r
J@@= Z [f(N;©.
i=k+1
Hence
k+r
Q) —A4,Q)= Z |f(O)—f(E)IN;(&).
i=k+1
Let us introduce the notations:
Il £l =max {|f(2)| :te[a, b]}, | X | =max {|x;+; —x;| :x;, Xi+1EX},
| X;ll =(length of suppN)), | X ||, =max {|| X,|| :1<Si<L +r}.

Choosing ¢; to be the midpoint of supp N; we get

k+r

/&) —A (Ol smax {|f(Q)—fC) :k+1<i<k+r} T N(O=o(f;]X],/2).

i=k+1

So, there exists a constant d, ; <[(r+ 1)/2], depending on r and E, such that
(3.1 dist(f5S, -1 (X, E)=d, s (f; | X ).

A theorem of Jackson’s type follows from (3.1) and the next lemma.

Lemma 3.1. Suppose that (X,E), |E|=2(r+k)+L, has a SG-regular
(r+ 1)-partition. Then (X, E) has a SG-regular (r +j + 1)-partition for all j=0,... k.

Proof. We apply induction on j. For j=0 the assertion is clear. Assume that
the lemma holds for some natural number j— 1 and consider an arbitrary (X, E,)
from the (r+j+ 1)-partition of (X, E). The pair (X, E,) is regular, because, by the
existence of a SG-regular (r + 1)-partition, E, satisfies the Polya condition and it is
conservative, since E is conservative. (X, E)), and (X, E)), ,; coincide with some
of the pairs from the (r+j)-partition and hence they are SG-regular. This yields
that (X ,,E,) is regular, as obtained from (X,,E,), removing the last knot.
Therefore (X,,E,),(X,,E)o, (X,,E),+j, (X,,E)) are all regular. ®
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Theorem 3.1. Suppose that (X,E) with |E|=2(r+k)+L has a SG-regular
(r+ 1)-partition. By Lemma 3.1 (X, E) has a SG-regular (r+j+ 1)-partition and
S,-1(X,E)cCl_ ., o) for some p implies S,.;_,(X,E)cC{*L ,,, j=0,...,k. Set

L+1

[a,b] := ) suppN,. If feC{, 4 then

i=r+k
dist(f;S,+x-1 (XGENZd, ;1 X o (P51 X 1),  j=0,...,k,

where d;, g is a constant depending on r, j and E.
We omit the proof which is similar to that of Theorem XIIL.1, [5].

4. Extension of Schoenberg’s variation-diminishing spline
approximation

First we extend an important lemma due to C.de Boor and G. Fix [6] (see
also [4],[5]) for the case of Birkhoff type of knots.

Lemma 4.1. We are given a pair (X,E), |E|=L+r and its SG-regular
(r+ 1)-partition {(X J-,Ej)}’{. Denote by (X j,E ;) the pair obtained from (X;,E)
removing both the end knots, j=1,...,L. Consider the linear functionals

r—1
4.1 Afi=Z (=1)pftTV(EN SN r—1),
v=0
where p;(t)=t""'+ (polynomial of degree at most r—?2), satisfying
(42) Ps“) (xk) =09 ek.ueE Jj? ek.y = la
and &; is an arbitrary point from supp N,. Then

(4.3) ;.,- Nj=5ij for all i j.
Proof. We have

d"(s—ty !
ds*

)

d“(4i((s—=°)")
s=x"=cjzakp dS" IS=Xk

N, ()=c¢,D[(X,, E); (° —ty '|=¢;Z ay,

8=Xk
(s — !

A,.Nj=cha,‘,,l,-< ds*

d*(s— o) !
=c;iZ a4 (““(_ZJM_>

(all summations are on e.,€E;, ¢,=1).
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If s<¢, then iii(sd—Tt)ﬁ,‘ =0, v=0,...,r—1, and hence 4;((s— °)y !)=0.
If s>¢, then e )
Al Pl
1=¢; r=¢
and
(4.4) R (R )

r—1
=3 (=P ITE) =) =) (= 1) (s— &Y T r—1)!
v=0
1

=>: PETITIE) (=Y T T fr—1—v)! = py(s),

v=0

since the last sum is exactly the Taylor series for the polynomial p,. Thus,
A((s— Y ) =pi(s) (s — &) .
Let us set g(s) :=p;(s)(s—&)%. Therefore
AiNj=c;Za g (x)=¢;D[(X},E));g1=D[(X;,E)o ;91— DX, E), ;4]

(i) Suppose i=j. Then D[(X, E)), ;g] coincides with the coefficient of x"~! in the
polynomial gen,_, satisfying

q(ﬂ)(xk)=g(ll)(xk)=0, ekueEj, ey = 1,
w9
q* () =9" (x)=p{" (x,), (x,, p) isthelastknotof (X, E,),.

Clearly, g=p,; because the interpolation problem (4.5) is regular, and hence
D[(Xj9Ej)0;g]=1' . .

The divided difference D [(X ;, E)), ; g] coincides with the coefficient of x” in the
polynomial gen,_,, satisfying

{q(ﬂ) (xk)=g(#) (X“,=O, ek“eEj’ €ru= ]’
g*" (x)=9" (x,)=0, if (x,,n) is the first knot of (X, E)),

Obviously, g=0 and we get D[(X},E)), ;9]=0.

Therefore 4;N;=1.

(i) Similarly, for the case i>j, D[(X;,E;);g]=0 since g (x,)=0 for all (x,, p),
ew€E,, e,=1 and for all (x,,p), x, <&,

(ili) For the case i<j we have
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{y“"(xk)=0=pf~“’(xk) ek”egi, e =1

9" (x)=p" (x}) all x,>¢;, -
and since p;em,_, we obtain D[(X;,E));g]=0
Now (i), (ii), and (iii) imply (4.3). B
Remark 4.1. In Lemma 4.1 the values of the derivatives at the points of
discontinuity are set to be the right limits of the corresponding function.

Remark 4.2. It is not difficult to see (i.e. [4]), that for f p,em, _, the

functional A,f does not depend on the choice of ¢;esupp N,.
From Lemm: Lemma 4.1, (4.4), Remark 4.1 and Remark 4.2, choosing &; to be the left

bound of supp N we obtain the next corollary, extending the well-known M. S.
Marsden’s identity [11].

Corollary 4.1. Using the notations of Lemma 4.1 we have
(s—ty " '=Z;pi(s) N;(t).
Theorem 4.1. Let {(X;,E)};*", be a SG-regular (r + 1)-partition of a given pair
L+1

(X,E), |[E|=L +2r and [a,b] := U supp N;. Consider the approximation scheme

i=r

L
(4.6) Vi) :=Z fE)N: (),  telab],
i=1

where &} is the unique zero of p{"~? and p,(t) is defined by (4.2). Then

a) V. preserves the polynomials from n, ;

b) the spline operator V, is variation diminishing ;

c) if f is convex or nonnegative on [a,b] then the spline V, has the same
behaviour.

Proof. Since p; has maximal number of Birkhoff type zeros in suppN and
E, is is _regular it follows from Rolle’s. theorem that p{’~2 has a unique zero
& esupp N;. The variation diminishing property of the B-splines with Birkhoff
knots is proved in [3].

Therefore ,

4.7) ST(VY=S™ (S, SED=S™ (),

where as usual S™ (g) denotes the maximal number of strict sign changes of the
function g in [a, b], and S~ (a,,...,a,) denotes the number of strict sign changes in
the sequence of real numbers a,,...,aq,.

Moreover, if hen,, then K (t)=0, v=2,...,r—1 and from the uniqueness of
the representation of the function heS,_, (X, E) in B-splines
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L
h(t)= = «;N,(t)
i=1
we get by Lemma 4.1

PrTRENRIE) TThprT i ER) KO(ER)
r—n +TEED =1

a=h(&)—

Hence o;=h(&f). Then (4.7) gives
(4.8) ST(W,=h=S"(V,=V)=S" (V- =S™ (f/—h).

If f(£)=0 on [a,b], clearly S™ (f)=0 and (4.7) yields V,(¢)=0 on [a,b]. If fis
convex on [a, b], (4.8) valid for all hen, yields that V is convex on [a,b] as well. B

We now estimate the error of the approximation scheme (4.6) for the function
g(t)=t2. We have

L L
g)=X B:N:(), V,()=Z (&)’ N;(),
i=1 i=

i= 1
Bi=(&)? +2pfr =3 (EN/(r—1)!

Therefore

N (41
4.9) g Vg(t)_.iz;l Tl—)'—

N;(1).
But

200 O — 1)1 =12 =2 &+,
for some ;. Then

2p7 I (ENNr— 1) = =& + .

Since p; satisfies maximal number zero conditions of Birkfoff type and is not
identically zero the Rolle’s theorem yields that p{"~¥(¢) has either two different
zeros n{), n{? or one of multiplicity 2 (in this case n{"’=#{*)) in supp N,. Then

Li=n"ni®,
and

(4.10) 12p¢ =3 (ED/r— D=1 =(E&D* +n" P || X, 112/4.
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From (4.9) and (4.10) it follows that

L
lgO—=V,0OI< Z I X, I N,(0)/4<|| X 2/4=d, | X |?, tela,b].

i=1

Lemma 4.2. For g(t)=t>

lg—Vgll=d, gl X ||

where the constant d,_p<r?/4 depends on r, E but not on X.
So we have:

(i) by Theorem 4.1 the spline operator V, is positive;
(i) by Theorem 2.2 V,=1;
(iii) by Theorem 4.1 V,=h for all hen,;
(iv) by Lemma 4.2 ||g—V,||»0 when || X || -0 for g()=¢>.
Applying the Korovkin theorem about the convergence of a sequence of

positive operators we obtain
Theorem 4.2. Using the notations of this section,
If=V; -0 when || X || -0

for every continuous on [a,b] function f.

5. Optimal shape-preserving Birkhoff interpolation

We are given X ={x;}7, x, <... <X, an incidence matrix E={e;}7; -,
|E|=r+L and arbitrary real numbers Y={y;;:e;;€E, e;;=1}. Suppose the pair
(X, E) has a G-regular (r + 1)-partition {(X,, E,)}{. Denote by Y, the subset of Y
Y, :={yij:(x;,j) is a knot of (X, E

Definition 5.1. The data (X, Y,E) are said to be r-strictly convex if
Av>0’ V=l,---,L’
where A, :=D[(X,, E,);y], y is any function satisfying
Y (x)=y; for all i, j.

Let us fix the above data (X, Y, E), a natural number r and a real number p,
1 <p<oo. Now we define the class of functions

F(X,Y,E):={ye W;[xl. Xpy) 19" 20, YW (x)=yij, e;€E, e; j=1}.

It is known that the set F,(X,Y, E) may be empty if r=3 and E having 1’s only in

its first column. In the case F,(X,Y,E)#@® and 1<p<oco we prove that there
exists a unique function f from this class with
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*m 1/p
1N, =inf {1y, : yeF,(X, Y,E)}, g, 1=<I Ig(t)l”dt) :

and characterize the solution to the extremal problem. This result extends the
cases of Lagrange and Hermite interpolation considered in [1], [8], [9] and others.

Lemma 5.1. Fj(X, YE):,éQ) if and only if there exists a function
geL ,[x,,x,], =0, such that j'g(t)B (t)dt=A,, v=1,...,L.

x

Proof. Suppose yeF}, (X, Y, E). Then from the Peano theorem

( _t)’ ! (,)
Y (x)= p(x)+§ o (ndt,  pem,;.

Thus

A,=D[(X,.E):7]= [ B,(Hy"()dr.

*y

That is, we may choose g=7y".
_—y—1
Let us set y(x) :=p(x)+ j & )1)' g (t)dt, where the polynomial per,_, is
determined by the 1nterpolat10n condmons at (X,,Y)),:
m( — )r 1—-j

D (x)=yy— | T
- PP (x) =y XI 190

e;€E,, (x,,j);é the last knot of (X,, E,).

Since (X ,, E,) is G-regular, then the interpolation problem (5.1) is poised and we
define uniquely polynomial p. Then from

X

TaPy9(x)=D[(X,, E, ),y]__( B,(t)g()dt=A,=Zal} y;

X
1

(summations are on the indices i,j with e;;€E,, e;;=1) and from the fact that the
coefficient in the divided difference D [(X,, E,) ; °] corresponding to the last knot
of (X,, E,) is not zero (see Remark 1.1), we get Y (x,) = y;; j for the last knot (x;, j) of
(X, E)). Slmxlarly using G-regularity of the (r+ 1)-partition {(X,, E,)}* we obtain
Y9 (x;))=y;; for all knots (x,,j). l.e. yeF,(X,Y, E) The lemma is proved. B
Suppose 1 <g<oo. Define the map ® :RE-R by

*m L q
®@ :=| <Z ava(t)> dt, a=(a,,...,a;)eR~k.
x v +

1 =1
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Lemma 5.2. If aq, b eRL and a,<b,, v=1,...,L, then ®@)=P (17).

Proof. Since B,>20 we have X, a,B,<X b,B,. Then (X, a,B,(t)%
<(Z,b,B,(t)% and hence ® (@)= (b). W

Theorem 51. Let (X,E) be a given pair, X={x]}7, x,<...<Xp,
E={e;}l"i /-0, |E|=r+L and {(X,,E)}; be a G-regular (r+1)-partition of
(X, E). Suppose Y={y;;:e;€E, e;j=1} are real numbers, such that the data
(X,Y,E) are r-strictly convex. Then the problems

(A) find a function y from F,(X,Y,E), 1<p<o0;
(B) find a* :=(a},...,a;)eRY, satisfying

f&m(

are both solvable or both unsolvable.

Proof. The proof-uses Lemma 5.1 and Lemma 5.2 and is not essentially
different from the proof of Theorem 1, [9]. One can see [1]. B

Suppose that F,(X,Y,E)#@ and consider the extremal problem
(C) find a function feF,(X,Y,E), such that

L q—1
> a,-‘Bi(t)) dt=A,, v=1,...,L, l<g<o

i=1 +

I/, =inf { | Y|, :yeF}(X, Y, E)}.

Combining Theorem 5.1 and the next lemma proved in [8] we obtain the main
result in this section Theorem 5.2.

Lemma 5.3. Let 1 <q< oo be fixed, S be finite-dimensional subspace of L,, A
be a linear functional on S, G be the set of all functions geL ,, 1/p+1/q=1, such
that g=0 and the functional {°,g) coincides with A on S. If titere exists heS such
that g, :=h%" '€G then | g, ,<inf{| gll, :9€G}.

Theorem 5.2. Let p,r, (X, Y, E) be as in Theorem 5.1 and F,,(X, Y, E)#Q. Then
the problem (C) has a unique solution f, such that f"=(Z;af B)% ', where {a}} is
the solution to the problem (B).

Proof. The uniqueness follows from the strict convexity of the L -norm,
l<p<oo. By Theorem 5.1 there exists a* eRY such that

{ B,(t)(Z,a! B,(t)y4 'dt=A,, v=1,...,L.

*y

Then for h:=ZX,af B, we can apply Lemma 5.3. In our case S=8§,_(X, E) »
={Z,o; B aeR"} the functional A is given by A(Z,«q;B)=ZX,;A;, d@eRk
A;=D[(X;, E); Y], and .

G={geL,:g=0,(Bng>=| B(0)g(t)dt=A}.

*1
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Therefore there exists a solution f to the problem (C), such that

fO=(Zar B m
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