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In this paper we consider the problem of scattering of an electromagnetic
wave by an ellipsoidal dielectric scatterer which contains a perfect conductor
confocal ellipsoidal core. We consider the problem in the low-frequency region.
Explicit closed-form solutions for the zeroth and first-order approximations are
provided in terms of the physical and geometric characteristics of the scatterer, as
well as the direction cosines of the incidence and observation points. The leading
low-frequency term for the normalized spherical scattering amplitude and the
scattering cross-section are also given explicitly. Degenerate cases, the spheroids,
the sphere, the needle and the disc are considered as special cases. As degenerate
case of the above problem, the problem of the perfect conductor and the dielectric

is also considered.

1. Introduction

In [5] we gave a systematic analysis of the electromagnetic scattering problem
at low-frequencies. The present work refers to the application of our general
method to a triaxial ellipsoidal dielectric scatterer which contains a perfect
conductor confocal ellipsoidal core. It turned out that the lack of rotational
symmetry for the scatterer makes the problem very difficult to solve in closed
analytical form. Moreover, the existence of the core which imposes new boundary
conditions on its surface adds new difficulties to the problem. So, a new
calculational technique had to be introduced in order to find the first two
low-frequency approximations in terms of ellipsoidal harmonics, Lamé functions,
and standard elliptic integrals.

A. F. Stevenson [9, 10] was the first to study the electromagnetic
scattering problem. He has examined the scattering when the scatterer is an
ellipsoidal dielectric. All the results of the present work are in agreement with
Stevenson’s results and can be derived as degenerate cases of our problem.

A main contribution to electromagnetic scattering in low frequencies is made
by R. Kleinman. In [1, 2] are given results for scatterers of spheroidal shape
when we have a Dirichlet or Neumann problem. The scattering of acoustic and
elastic waves by scatterers containing a core are examined in [3, 6].
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In Sec. 2 we formulate the problem we discuss in this paper. For
completeness, we include all the necessary formulae, far-field expressions, integral
representations, fundamental solutions, scattering amplitude and scattering
cross-section which are proved in [5]

In Sec. 3 we introduce the ellipsoidal harmonic functions in order to reflect
the geometrical peculiarities of the scatterer. We give all the definitions and the
useful relations among the ellipsoidal harmonics, Lamé functions and the elliptic
integrals.

In Sec. 4 we apply a technique in order to solve the zeroth-order coefficient
problem and the first-order coefficient problem.

The normalized spherical scattering amplitude and the scattering cross--
section are evaluated in Sec. 5.

Finally, in Sec. 6 we discuss the special cases that correspond to degenerate
ellipsoids and the degenerate cases which are obtained if there is a particular
relation between the material constants or if there is geometrical degeneration.

2. Formulation of the problem

Let us assume that the triaxial ellipsoid
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is a dielectric with dielectric constant &, and permeability u, which lies in an
infinite homogeneous isotropic medium V, with dielectric constant &, and

permeability u,. Let us also assume that a triaxial ellipsoid
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which is a perfect conductor lies entirely within the first eHipsoid and is confocal
with it. Let us define V, the space between the surfaces of the two ellipsoids.

A harmonic time dependence exp { —iwt} where w is the angular frequency is
suppressed throughout this work. _

An “incident” plane electric wave E™ propagates in the medium V, along the
propagation vector k. Let the corresponding magnetic wave is H". The two waves
have the form

En (r)= seikl k.r

3) | By
H"(r)=(k x b) (#—)1/2 ek,

1
where b is the unit polarization vector for the electric field b-k=0 and k, is the
propagation constant for V,.

The ellipsoid (1) called the “scatterer” disturbs the propagation of the
incident wave. The ellipsoid (2) will be called the core of the scatterer. If E(r), H(r)
are the scattered electric and magnetic waves respectively and E;(r), H;(r) the total
fields for the spaces V;, i=1, 2, then (due to linearity) the total waves are given by
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the sum of the incident plus the scattered field. All the above fields satisfy the
equations

VxVxw(r)—k}wr)=0, reV, i=1,2

(4)
V.w(r)=0,

where
(5) kP = p;¢;.

The boundary conditions for the electric field on the surface of the dielectric
S, are given by the equations
AXE (r)=AxE,(r)

’

(6) . reSl.
ix(Vx E, (r’))=5—lﬂX(V x E, ()
2

For the magnetic field the boundary conditions on S; can be derived by Eqs (6)
substituting E; with H; and p; with ¢;. On the surface of the perfect conductor S|,
the following equations must be satisfied

Ax E,(r)=0

’

(7) , reS,.
AxVxH,r)=0
On the surface S, of the dielectric the boundary condition

8) (A E(r)dS(r)=0,
s

must also be satisfied [5].
The scattered fields E(r), H(r) satisfy the radiation condition, due to

Sommerfeld ]
. E : E
9 'lilg r X {V X (H((:))>} +ik,r (H((:))) =0

uniformly over all directions.

In what follows we will examine the: electric field only, because as we can
prove the determination of the electric field suffices for the evaluation of the total
electromagnetic field. The total electric field admits the following integer

representatiton [5]
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E, (r)=E""(r)+% % [ VXE,(r).(axT(r,r)dsS(r)
25,
1
(10) - 5"]2 {(2—: — Dk E, (r). T (r,r)

+(1— /ij-l)v x E,(r).V, x T'(r,r)} dU (),
2

where the fundamental dyadic has the analytical form

ik|r—
T, r’)=k2—'r'§|,|3— {K*(r—r)®@r—r)
(11)

r—rY®r—r), e*lr—r|
lr—r|? lr—r|

+(1 —iklr—r|)T-3

We have proved in [5] that the normalized spherical scattering amplitude is given
by the

g(t°,§)=i{—ik1 | [ VXE,(r).(Ax(T—F® P)e*1*rdS ()
4n Has,

(12) +(§Z —1)ik} [ E,(r).(T—# @ Ae—™ i*dU ()
1 V2

+(1—EYk2 [ VX E,(r).(Tx e *r7 dU ().

2

The scattering cross-section, which is actually a measure of the interaction of the
scattered and the incident wave, is defined as the ratio of the time average rate at
which energy is scattered by the body, to the corresponding time average rate at
which the energy of the incident wave crosses a unit area normal to the direction
of propagation. The scattering cross-section is equal to

1
(13) o== [ |g#Kk)*dQ(#).
ki it=1

In [5] we have shown that if we consider the expansions
a0 'k n
(14) Ew=z "

n=0

D), rev, i=1, 2,

the following sequence of partial differential equations is obtained
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V xVx @D (r)+n(n—1)ym, @9, (r)=0,
(15)

V.®Y(r)=0, n=0, 1, 2,..., reV, i=1,2,
where
1, for i=1
(o) e ﬂz_az’ for i=2.
H1&yq

The boundary conditions are transformed into the boundary conditions

AXDPV(F)=hx D (r)
(17) , FeS,
Aix (V tbf,"(r’)):%iﬂ X (Vx @D (r)
on the surface of the dielectric, and
(18) Ax®P(r)=0, reS,
on the surface of the perfect conductor.

The coefficient @V (r), which forms the n-th order low-frequency
approximation of our scattering problem has the following integral representa-

tion [5]

¢$,"(r)=5(ﬁ.r)"+‘—:; % 5 (") [ (Vx @@ )
So

2 p=0

P 1

1 n
(19) (0 Fuep () AS() + - go(;) (G == 22

T 1) — (1 — %)V x @D (r). 8, ,(r,r)}dU (¥),
2

where

N Lt (=) (r—r)
(20) v,.(r,r)-——T{(nH)T (n 1)———|r_r,|2 }
and
(21) S,(r,r)=(n—=1)|r—r " 3(r—r)xT.

The low-frequency expansion for the scattering amplitude is given by the
expression
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1 py (ikl)"+l :
Pk = T an L —_—
g (7 k) #2" T

(:)(— % y Vx @@ (r)

o

-(ﬁ><(7—r"®f))(F.r’)"dS(r')—41 &1 3 (iky )"’“3

1 n=0
n

(22) > (;)(—w [ @@,().0—¢#@#(F.ryPdU )
V

p=0

___(1__#1) Z (lk )"+2 :
K2 n=0 ol p=0

(p)(— 1)? j Vx®@,(r).Ix#)(F.rydUu ().

3. The ellipsoidal geometry

In order to reflect the geometrical peculiarities of the scatterer we introduce
the ellipsoidal harmonic functions. The ellipsoidal harmonic functions, as it is well-
known, form a complete system of eigenfunctions. In what follows, we will give
certain definitions about ellipsoidal harmonics. For details about the ellipsoidal
harmonics we refer the reader to W. Hobson [4].

The ellipsoidal coordinates (p, p,v) are related to the Cartesian coordinates
(xy,x5,x3) by

_ Py
! hhs
(23) MR/ T R
2 hlh3 )
\/p —h3/hi—u 2 /h3—v?
h,h,
where
(24 h}=a3—a}, h3=ai—a3j, hi=ai—a3
and

0<v2<h2<p2<h2<p2< + 00.

Separation of variables for the Laplace equation in ellipsoidal coordinates
produces the interior ellipsoidal harmomcs

(25 Ex (p, 1, v)=E7 (p) ET () ET' (V)
and the exterior ellipsoidal harmonics
(26) Fr (p,u,v)=F7 (p) E7 () E7' (v),

where E™ are the Lamé functions of the first kind and
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(27) F(p)=Qn+1) E} () I7 ()
with
+ oo d
(28) )= | 2

o (E7(w)?/u?—h3/u*>—h2

are the Lamé functions of the second kind. The index n specifies the degree of the
corresponding ellipsoidal harmonic and takes the value n=0, 1, 2, 3,... while
m represents the number of independent harmonic functions of degree n and runs
through the values m=1, 2,...,2n+ 1. The interior ellipsoidal harmonics of degree
0, 1, and 2 are those we use in the present work and for the sake of completeness
we give their exact form, both in ellipsoidal as well as in Cartesian representation :

(29) Ed(p, u,v)=1,

El (o, 1, v)=ppv

=x,h,h,
Ef (0, V) =/p* —h3 /u* —h} /3 —?
o0 =Xx,h,h, >
E} (o, V) =/P*— M3 /W3 —p*  /hi—v?
=Xx3h,h,

E2(p.mv)=(p*> —ai + A)(u® —ad + A) (v’ —a? + A)

3 2
=A-a)(A-ad(A—ad)(Z E_4,
k=1 A—oi
(31) |
E3 (o1 v)=(p>—a} + N) (2 —a2 + A) (v* —a2 + A)
N —a)A—ai(z -2
=(A"—a '—a —+1),
! 2k=1 A—af )
E3 (o, 1, v)=E (p, 1, v) E3 (p, 11, v).)
=x,X,h,h,h3
E; (pa X, V)= E{ (P, H, V) Ef(ﬂ’ K, V)
32) ' -

=x,x3h,h3h,

E3 (0, 1, v)=EZ (p, 1, v) E3 (0, 1, v)

2
=Xx,X3hih,h, J
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where A, A’ are the two roots of the equation

! =0
1/\—‘1.'2_ ’

3
(33) b3

i

The exterior ellipsoidal harmonics of degree 0, 1, and 2 are given from (26)
when (29) — (32) are used. The Lamé functions of degree 0, 1, and 2 that appear in
the expression (28) for the elliptic integrals I (p) are

Ej(p)=1

T(p)=/p*—oi+on, m=1,2, 3)

Ej(p)=p>—ai+A

(34) E3(p)=p>—ai+ A’
E3(p)=p/p*—h} (
E$(p)=p/p?>—h}
E3(p)=/pP*—h3/p*—h} ]
the set of functions
(35) {ER(WEy(v): n=0,1,2,..., m=1,2 3,...,2n+1}

forms a complete orthogonal set of surface harmonics on the surface of the
ellipsoid

i x} x3
p> p*—h3 p*—h3

=1.

4. The low-frequency approximations for the electric field

The sequence of problems to which the scattering ?roblem is reduced is
described by the inhomogeneous Eq. (15). The coefficient @.! (r) which forms the
n-th order low-frequency approximation of our scattering problem is given by
the sum

(36) @ (N=PP N+ WD(r),

where P{" (n) is a particular solution of the inhomogeneous equation and W,(r)is
the solution of the corresponding homogeneous equation. By substitution in Eq.
(15) of the nonvanishing part of the asymptotic form of Eq. (19), as r—oco which
can be derived from Eq. (19) if we omit the n-th term in the right hand side, we
conclude that it provides a particular solution of the inhomogeneous Equation.
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So at every step of the low-frequency approximation technique we have to solve
the exterior boundary value problem

VxVxW(rn=0
V-WM(@r)=0, n=0, 1,...

(37) Ax WP (F)=ax(@PF)-P1 (), res,
Aax(Vx Wf.”("'))=%ﬁ x(Vx (@2 (r)— PP (r)

1 2
Wf,”(r)=0(;), r—+oo

Using Stokes’ decomposition W (r) can be written as
(38) WHn=VUL @r)+VxV(),

where every term of the sum in Eq. (38) must be solution of the equations of the
roblem.

P Similar arguments hold for the interior field @ (’ (r). In what follows, we will
expose the calculational technique which we will propose in order to overcome all
the difficulties arising from the ellipsoidal shape of the scatterer, and moreover,
the existence of the core which imposes new boundary conditions on its surface.
The use of this technique permit us to evaluate the low-frequency coefficients in
a finite number of steps.

We observe that the particular solution PV, as it is given by the asymptotic
form of Eq. (19), has expansion in terms of surface ellipsoidal harmonics up to
degree n. Since on the surface of the dielectric the tangential components of the
electric fields must vary continuously across the boundary and on the surface of
the core the tangential component of the electric field must be equal to zero, we
conclude that the terms P¥, W, i=1, 2, in the representations of @ ’ have to be
up to degree n in terms of surface ellipsoidal harmonics.

So, for all the parts of @\ (r), which include the operators V, Vx, we will take
expressions, for the functions on which act these operators, in terms of surface
ellipsoidal harmonics up to degree (n+1). After the action of the operators we
conclude to harmonics up to degree n.

In what follows we will evaluate the zeroth and the first order
approximations of the electric fields in low-frequency region. As it is well-known
these approximations give us enough information for the total fields [8]. The
proposed technique will be clear in the evaluation of the first order
approximation, because the zeroth-order approximation as the solution of the
electrostatic problem has a well-known form. Nevertheless, the main points of the
method characterize the zeroth-order approximation as well.

a) The zeroth-order approximation

The particular solution of the zeroth-order approximation for the exterior
field is B, that is of degree zero. If we use the well-known representation for the
electrostatic problem we have



Low-Frequency Scattering by an Ellipsoidal Dielectric 379

(39) P N=b+VUP (1),
(40) P (N=VU (),

where the scalar potentials for the exterior and the interior fields are given in
terms of second kind and first and second kind ellipsoidal harmonics respectively,
as follows :

@41) UP A= 1)+ T o™ FT (o, 1),

m=1
3 3
@2) UP(=a3' I5(p)+ Z afd"FT (o, m,v)+ T bGI™ET (p, 1, V).
m=1 m=1

In the evaluation of the VFT(p,u,v) we will use the general form

(43) VE (p, 1, v)=2n+ 1) (VET (p, 1, V) I7 (p) — (2n + l)hﬁ

) E7 (p, 1, v)
[Er (0 /P> —h3/p>—h3

where

: PP pP—?
44
(44) o

is the square root of the ellipsoidal etric coefficient that corresponds to the
variable p, and

X

1
i

p 3
45 =y i
(43) s h, icq pP—al+af

is the unit curvilinear vector relative to the variable p, and %£,;, i=1, 2, 3, are the

Cartesian base vectors. ) )
The exterior field @ §’(r) admits the following representation in terms of
surface ellipsoidal harmonics

(46) @ ()= {b+3h,h,h, = x “E’:’"' () £,)
- - e+ 32 " ) E7 ().
Vit p*—v 1 ET(p)

‘We will refer to the first bracket of (46) as the “Cartesian” part of @ (" (r) and the
second bracket as the “ellipsoidal” part of it.
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Similar representation, which includes “Cartesian” and “ellipsoidal” part
holds for the interior field.

We observe that due to the factor p(p?—pu?) '2(p2—v?)~ 12 it is not
possible to express the second bracket in the right hand side of Eq. (46) in terms of
a finite expression of surface ellipsoidal harmonics.

Nevertheless, the boundary conditions involve inner and vector products of
the unit normal vector on the surface of the scatterer that is the vector g. So
exploiting the above decomposition into “Cartesian” and “ellipsoidal” parts, we
apply the boundary conditions and evaluate the solution in a finite number of
steps.

After the application of the boundary conditions, by the orthogonality of the
surface ellipsoidal harmonics, we conclude to a system for the a’s and b’s
coefficients, the solution of which give us

@7 3" =0,
buhy  JT@)=IT(B)
48 Dm _ m_m —1}, m=1, 2, 3,
@) A ST HE, }
1
(49) HEy =030 C2 = DIT @) (T @)~ 1T (B) — ——} — 1T (By),
€ 00,0
(50) 3" =0,
b,h
om___ Omlm
(51) a%l 3h1h2h3H81’ m 19 2, 39
b,.h
2m __ m'tm e
(52) b= — s =123

b) The first order approximation

Using the asymptotic form of Eq. (19) and the representation given by Eq.
(38) for the first-order approximation we conclude that

(53) P WN)=bk-n+VUP()+Vx VP (@),
(59) DPr)=VUPr)+VxV2(@).
Expressing, now, the scalar potentials U O (r),i=1, 2, in terms of ellipsoidal

harmonics of second kind for the exterior space V, and of first and second kind,
for the interior space V,, we have

3
(55) VUL @)=o{3"VIs(p)+ = af™VFT (p, p,v)
1

w

+ z 05(1221 VF? (p’ #a V),

m=1
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(56)

3
VU@ ()=o3' VI5(p)+ = o™ VFT(p, V)

m=1

3
3" VT (p, uv)+ Z bEH™VET (p, p,v)

1 m=1

+

m

I ™Ma

wn

+ Z b3 VEZ (o, 1, ).

m=1

For the vector potential of the exterior field we have

(57)

Vx VO ) =V x AL 0 (1) = Vo (1) x AP,

381

where ¢{") can be expressed in terms of surface ellipsoidal harmonics up to degree
two. We can choose ¢{" in such a way so, after the action of the operator V on it,
the result would be a vector of “Cartesian” type. This choice ensures that the first -
order field @ (! (r) can be expressed as the sum of two parts : the “Cartesian” and
the “ellipsoidal” one. This decomposition is necessary in order to apply the
boundary conditions as we have already seen above. In what follows, taking
¢{"(r) in the form

(58) @

we have
(59)

and consequently,

®w=r

3 1
3 B, Pl V)R, — =1}
6h1h2h3m=1hm l(p#v) m 210(p)

3
z h,Fl(p,u,v) %,

(1) (p) —
VO = Sy e

VxV{¥(r) is of Cartesian type only.

Similar arguments hold for the vector potential of the interior field. So, finally

we have

1
oo

(60)

+

3
A=bh-P) 4 T by FT(p, 1) £ X Ay (1)

3h1hzh3 m=1

3
+ai3' VI (p)+ T o™ VFT (p, 1, )

m=1

o VF3 (p, 1, v),

1

+

™M

3
2 by F7(py 1) £, x AP

1
@ (p) —
P O= 3 oy

hyihohy =y

3
Z h, ET(p,,v) £, x B +a{3" VI§ (p)
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5
aB@"VFT (o, v)+ = aB"VFZ(p, 1, v)

1 m=1

(61) +

™M

w

5
+ T bEA"VET (o, u,v)+ = bE"VEZ(p, V).

m=1 m=1

After the application of the boundary conditions p=a,, p=f,, by the
orthogonality of the surface ellipsoidal harmonics, we can evaluate the
coefficients. So we have

(62) afg! =af3' =0,
(63) Y =a@m=bFA"=0, m=1, 2, 3,
kxﬁ 2,
) _ _ m
Afp=—05101 2)([3 B2B3 T(B1)
(64)
+(l——)I (oty)— Py 2m;‘], m=1, 2, 3,

== HIT )G —IT(a,))—[(l—l’—j—:)mal)

3

©) 1 1
o G 1T )
(66) . ASZ;:%’ m=1, 2, 3,
) Blm gt e m=1,2.3,
©) o =g 3 teke g LEI_TH,

30(A—A')]i(°‘1)m=1 A— Hi,

& £
(69) Hi,=(I3(a)—I3(B,))[1+2a,0,0;A (6_2 — )13 (ay)]— 8_215 (ay).
1 1
o$Y? can be obtained by a{}}!, if we interchange A with A’ and I} with 13. We will
denote this, by .
(70) P =a)! AN, IieI3,

1 > bk,
30(A—A)H {3 ,-y A—a?’

(71) P! =—
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(72 = AN, e,
BB) L bk
73 by =21 e
) S SA-MHL ., A
(74) PP =b AN, Do,
N
0‘(112)("'+")_ ,,,+,.{2(I';+"(“1)—I'5+"(ﬂl))

" 10h,hyh h, H'S
(b, + b kna2)— 2 (0 +a2) (137" (1)
1

1
a0

=17 (B))—

) (Kb, +k,b,)+[2(15 " (,)
o3

— I3 (B)) @ I (o) — 0 T (@) — 2 (T (@) — I ()
1

1

AW
M

(om+o)(IZ " ()= 137" (B1)) —

€ €
+28—2hf Iz " () —13""(B,) BR — f[(l’i'”(ax)
1 1

— 177" (1) (e I (oy) — o I7T (o)) — (o7 +0x7)

1
dyoy0

(75 Ti(x)—IT(@))+ (17 () —IT (@) =TT (B) —IT (BN AR},

HES "= (13" @) = 13" BN — DIF " (@) @+ d)
1

1 e Im+n
(76) + | S Bt (a,), m, n=1, 2, 3, k#¥m#n#k
A0y &y 0,050

1
10k, hyhyh, HYS

aBemm = {2177 " (,) (b, 07 + by, i)

_(kmbn +knbm)(1';+n(a1)(arzn+a3)_

0y 00y

+ 21777 (o) (om I (o) — o I (o)) — (17 (o) — IT (2¢y))

I3+ " () (@2 + o2) — 1A9;3+2z—jh3 I7*"(a,) BR

0y 0p0s

383
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+[(z—2 =D 13" (@) (e + ) (I (B) — IT (By))
1

0 ) = 1T (@) (U3 (@) 0+ o) — ——
14243

+

UF B =TT (BN =22 13" (@) (3 I} ()

Xy X3

(77) —2 @) AR}, m, n=1, 2, 3, k#Em#n#£k,

m+n
b(122)(m+n)__ 12 (ﬂl),,,”{(k,,.b,.'*‘k..bm)(l';ﬂ(“x)

"~ 2h,h,h;h, HTS

(ot,2,.+a,%)— )_2I?+n(al)(bmkna3+bnkmarzn)

0y 0%y
— 215" (o) (o I (o) — 0t IT (aty)) — (I () — IT (2ty))
1

1%2

L4
(I3 (@) (0 + ) — — I AR =22 B2 17+ (o) B
3 1
I3+ (@)

m+n 2 2
I,;+,.(ﬂl)(12 (al)(an +am)

o R CAAR TN
1

D (7 () = I ) (137 (1) (02 + 02) —
00y Ly 0p0y

(78) —22—215"+"(a,)(a3 (@) — a2 IT@ ) AR}, mon=1,2,3, kEm#n#£k.
1

5. The normalized scattering amplitude and the scattering cross-section

Knowing the exact forms of the first two low-frequency fields it is possible to
evaluate the normalized spherical scattering amplitude up to the term k3 by using
the expansion [5]

g (. k)=(ik,)® {— % ’—;1 [ Vx®@(¥)xAdS(r)

2 So
1 |
+— B [ r@VXx®P (W) xadS(r)
4m py So
1 e,

2-1) (@@ E)AUF).T-+RF)

Tal, D)
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(79) —;—nu—ﬂ) [ Vx®@P@)dU (). Tx#+0 k), k, —0.

2 V2
The integrals in (79) can be evaluated as follows:

4n 3

(80) [rVvxe® (r)x adS(r)= lm bxk.z,)%,xT,
So 3ag0503 =y HTy

3 m m
81y (D‘oz’(r’)dU(r’)=4—37Eala2a3 z W) 17,

Vay m=1 01

b, %,

4 3
[(Vx@PE)aU @) =5 T [UTB)—IT @)
m=1

Va
1 1 kxb.x,

- £ .
+(‘7‘1‘3‘20‘3 BIBZB3)] HT, "

(82)

For the evaluation of the integral which contains the second-order
approximation of the electric field, following the above prescribed technique for
the evaluation of the low-frequency coefficients we must work with ellipsoidal
harmonics of third degree. We prefer to solve a similar as before problem for the
evaluation of the first order approximation of the magnetic field and exploit the
relation between the electric and magnetic low-frequency fields [5]

2
(83) Vx®P ()=t 9@, rev,.
K&y
After the evaluation of the coefficients for W (r), we conclude that

8 3 b
(84) ij¢gZ)(r')xﬁds(,')=_”L‘z T 2mg

So 3 Uy m=1GT1

where
85) Gy =T (B —IT @) (1 — 2yayap0y IT (@) + 21+ I7 ().
£, £,

The scattering cross-section is given by the relation [5]

1 pf
o=kt{— "L | [ Vx @D () xadS ()|
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7 ui 2 , 1 & 5

AN it / / / —(F2 2) INYS
*eo #%|S§O(Vx¢l () A)-F S @)+ (2 =) |Vj2¢o (*)dU ()|
(86)

1
+ (1= 592 [ vx @@ @) dU ()P
6m Ky v,

+L K2y [Vx@@(r)xAadS(r). [ @@ (r¥)dU(r)

61, &, So v,
1
+6— Ei(l — ﬂ) _[ (Vx@PF)xa)yxrdS(r). _f V x (D(lz’(r’)dU(r')} +0 (k9).
Ty Kz s, v,

The integrals that appear in (86) assume the values
(87) [r.Vx@®@@)xAadS(r)=0,
So
8n é k-xﬁ..émf

88 Vx®@P(F)xa)yxrdS(r)= :
B8) [ (Vx@P()xi)xrdS()=g S T

So

The integrals given by Eqs (87, 88) are the scalar and vector invariants respectively
of the dyadic given by Eq. (80).

By direct substitution of Eqgs (81, 82, 84, 87, 88) in (86) we derive the leading
term approximation for the scattering cross-section in low-frequency region.

6. Physical and geometrical degenerate cases

The physical interpretation of the mathematical problem analyzed in this
work involves a plane harmonic electromagnetic wave, that propagates in the
three-dimensional Euclidean space where there exists a dielectric with the shape of
a general triaxial ellipsoid with a confocal triaxial ellipsoidal core, which is
a perfect conductor. The existence of the ellipsoidal scatterer, which is arbitrarily
oriented with respect to the propagation vector of the incident plane wave,
disturbs the incident wave, and as a result a much more complicated wave field is
established.

The zeroth- and the first-order approximation coefficients of the electric fields
are determined. The real difficulty of the problem is focused on the evaluation of
the first-order low-frequency approximation, which demands many mathematical
techniques. The leading term approximations for the normalized scattering
amplitude and the scattering cross-section are also given.

The physics of the problem is determined by the values of ¢,, €,, u;, #,. The
special cases of scattering by a dielectric or a perfect conductor correspond to
physically degenerate cases of our general problem. This has been achieved since
all'the types of boundary conditions have been incorporated on the surfaces of the
two ellipsoids. In what follows we will present results for these special cases.
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a) Dielectric
Considering the limit case

By—hy, By—hy, B30,
we have V, — 0. Taking the limits as S, — h, of the elliptic integrals and

evaluating the limits of all the coefficients we conclude to the solution for the
dielectric scatterer, we present the result for the zeroth-order approximation.

£
ay00y (= —1)

3 b_h

(89) L (N=b— T — = VET (p. 1, V),
m=1 3hyhyhy €; m
a1a2a3(;:——~1)11 (ay)+1
1

3 b oh 1
90 D)= X mm T .
( ) 4] (r) et hlh2h3 VEI (P,ll,v)

&
2503 (2 = D IT () + 1
1

The above solution is in agreement with already existing results.

b) Perfect conductor

Taking ¢, =¢, and u,=pu,, we have the case of the perfect ellipsoidal
conductor with p=pf, and the result for example, for the zeroth-order
low-frequency approximation is

o1 PPW=b- T — I GEn(p )
m=1 Jhihoh3 IT (By)
As geometrical degenerate cases can be considered the spheroids, the needle,
the disc and the sphere.
A prolate spheroid is obtained whenever o, >a, =a5, while the case of an
oblate spheroid corresponds to o, <a,=o05.
The elliptic integrals can be evaluateé in closed form for spheroids

'

1 h
_ln(&), o, >,
. 1 2 p—hy
92) Io(p)=1- 41 ,
3 1 ihy
—tan” ' (—), a,<0a,,
i P
1 L 1
93) I (p)=—Us(p)~ ),
hy p
94 ()= 1 (p)= — — (I} (p)— —P—
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9 3p
95 I} (p)=— (I} (p)— ———),
3 p (3p* —5h3)
96 IZ(p)=15p)=—T}(p)— —5—=)>
3 3p%2—2h2
97 Bp)=Ip=——U 0P — —)
where
cos hw Joi—aicosho, a,>a,
(98) p=hy =
isin hw Joi—alsinho, o, <a,
and (w, , ¢) are the spheroidal coordinates which are related to the Cartesian
coordinates (x,, x,, Xx3) by
x, = p cos ¥ , wel[0, + o)
(99) x,=+/p*—hisind cosp, V[0, n]

x3=+/p*—hisindsing, @el0, 2n).
For p=a, we obtain

[(ﬂ)z—l]“”2 cosh“(ﬁ), oy >,
L) oy
(100) Ig=—
P)
o o
[I=CH172 cos ' (), ay>ay
L2 P)

and through (93)—(97) all the other elliptic integrals can be expressed as functions

.o
of the ratio —, whenever p=a,.
o)
Having the values of the elliptic integrals we can substitute them in the
corresponding expressions and obtain the results for an oblate or a prolate

spheroid, as the case maybe.
The needle-shaped scatterer can be approximated by a prolate spheroid,

where o, »a,=a5. In this case

&y
In2(—
[0 o
(101) IL~— e o
ocz (al) a2
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_In the case, where o, «a,=0a,, the oblate spheroid takes the shape of
a circular disc and

(102) Ig~—, ——>0+.
The sphere is the shape that corresponds to radial symmetry and comes out

of the case, where a, =a,=a3;=a.
The elliptic integrals assume the following values

1
(103) Is(p)=—,
p
1
(104) I(p)=7—5, n=1, 2,3,
3p
1
(105) I(p)=—s, n=1,234,5.
5p

We also obtain that p=r, u=v=0 and A=A’=a? In order to evaluate the
undetermined forms in the various expressions it is enough to approximate the
sphere, say by a prolate spheroid setting a, =a(1 +¢), £€>0, a, =a; =« and obtain
the case of a sphere in the limit as ¢ > 0+. Obviously, the combination of the
physically and the geometrically degenerate cases give us a certain number of
special scattering problems which can be solved by our general approach.
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