Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathematica
Balkanica

Now Series Vol. 3, 1989, Fasc. 3-4

Best Onesided Approximations and Mean Approximations
by Interpolation Polynomials of Periodic Functions

V. H. Hristov

Presented by V. Popov

0. Notations

We shall consider the functions defined on R¢ d-integer, which are
2mn-periodic on every variable. The norm of the element x=(x,,x,,...,x,)eR? is
x| =max {|x,| :s=1, 2,...,d} and the é-neighbourhood (6>03 otzthe point x is
given by

(1) U (6,x)={y :yeR%, | x—y| </2}.

With T¢ we denote the set of all trigonometric polynomials of d variables,
which are polynomials of degree n on every variable. Set I1¢=[—mx, n]%. The space
L,(M%)=L, is equipped with the following norm (feL ,(IT%)

1A= 1SN porndy = [(275)_"r£d I/ (x)1Pdx]'"?, 1<p<oo;

1/ 1o = 1S 1l coomdy =sup {1 /()| : xeTT%}.

By L (IT%) we denote the set of all bounded and measurable functions f with
the norm | - || and by C(I1?) — the space of all continuous functions with the
same norm | «| . For the functions from L , (I1%) we introduce the following
(local-global) quasi-norms (see [2]) (6>0,1<p=<o0)

(2) ||f||a.p= ||f||a.p(n4)= I "f"uo(U(d..)) "p(n‘): ||fa||p(nd),
where
(3) fs(x)=sup {|f(®)| :teU (3, x)}.

It is easy to see that for fixed 6 >0 and 1 < p < oo the norm in (2) satisfies all of
the norm’s axioms, The set of functions L . (I1%) equipped with the norm (2) we
denote by L;,(I1Y)=L;,.

Let a=(a,,a,,...,a;) be a multiindex. We denote by D*=D"1...D% the
differential operator in Is‘ (see [11], p. 140), where D% =3%/dx%, s=1,...,d. For
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given integers m and d, m=0, we set Ny, ={0, 1,...,m}‘ — the set of all different
multiindices of dimension d with components ‘which can have the values
from 0 to m.

For a given point x,eR? we consider the following equispaced set of points
{xJ} jend , where

Xj= (5,3 X;),5 -0 X; ) =X+ 27j/(2n + DeRY,  j=(j1sjzs---2Ja)EN%n.

For the functions f in L _(IT1%) we shall use also the following net norm
(1=p= )

ISl €8ns s =[Cn+1D~" T _|flx)I7.

N
JEZ

The best approximation of a function feL,(I1%) with trigonometric
polynomials from T3 in the metric of the space L, is given by

E,(f),=inf {|| f—T || ymd : TeT3},

and the best approximation of a function fe L, .»(IT%) with polynomials from T4 in
metric (2) is given by

E,(f)sp=I0f { | f=T lls,pme : Te€ T7}.

The best onesided approximation ([13], p. 242) of a function feL , (IT%) with
polynomials from T3 in the metrics of the spaces L, or L,, are respectlvely
given by

E,,(f),,=inf{[| T =T lpmd :T*eTs, T~ (x)Sf(x)ST™ (x), xeR?,
E,(f)s,=inf{| T* =T |lspm4 : T €T, T~ (x)<f(X)<T* (x), xeR%}.

For characterization of the structural properties for a given function f from
L, or L, we shall use the following moduli (see [11], p. 145,[13], p. 18,[12] and [13])

@) , (f;0),=sup { | AKf(*)Il, :|h| =6}
)] T (f.9),=llw(f+,0)l,,
where

Ak f(x)= i (—1)"“(’:>f(x+ih), x, heRY,
i=0

o, (f,x,8)=sup {|Akf(t)| :t,t + kheU (ké,x)}, xeR’.

B} ,(I1%) denotes the Besov space equipped with the norm generated by
moduli 14) or the equivalent norm generated by E, (f), (see [1], p. 254 or [11], pp.
159, 212).
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In the paper d, n, k (integers) and p, 1 <p < oo, are fixed numbers which will
be used for the dimension of the space R¢ for the degree of the approximating
polynomials, for the order of moduli (4) or (5) and for the metric of the spaces L .
By ¢ we denote positive numbers which may differ at each occurrence. If ¢ depends
from some parameters, we indicate the dependence using indices.

The unique trigonometric polynomial from T4 interpolating a given function
feL (1% at the points {x;} , is denoted by I,(f).

jeN
If t=(ty,ts,...,15)eR? and”"ueR! then we denote by D,(u)=D, , (u)

sin(n+1/2)u -
= — l
2sin(u)2) the Dirichle kernel, by
_sin’nu/2 .,
(6) D, (u)=,p,, (u)= sinu2 sin”® 1t/2n

the properly normalized Fejer kernel, by D, (t)=TI¢_,D,(t) and by
D, 4(t)=T1I¢_, ®,(t,) — their corresponding d-dimensional analogs. Note that

(7) ®,4,€Th-1.
The interpolating polynomial I,(f) has the representation (see [8], p. 10)
L(£x)=2/2n+1)"" Z f(x)Dpa(x—x)).

jeNZn
1. Main results

Inequalities between the quantities E,(f),s En(N2xmps En()ps | L (N=S ]
and | I,(f)—/ |l 2x/n,p (note the usage of the defined above norm (2) with 6 =2n/n
are obtained in this article. These inequalities and Theorems A and B given below
will imply characterizations of the orders of convergence of these quantities via
moduli of type (4) or (5) of function f.

Theorem A (see e. g. [11], pp. 189, 195). For every feL, (1) we have
En mp é ck.d wk (./; l/n)p 5

wk(.f; l/n)péck.dn_k z (v+ l)k_l Ev(f)p'

v=0

Theorem B ([13], pp. 242-257, [5], [3]). For every fe L  e(I1%) we have

E,(NSccan(f1/n),;

(L 1/n),Scean™ T (v+1)7! Ev(.f)p'

v=0

In the paper we prove
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Theorem 1. For every feL _ (I1%) we have
En (f)pé Caq En (f)Zn/n,pécd En (f)p'
Theorem 2. If feBj% (I1%) then f=F a.e. on 11 for some FeC(I1% and

E,(F),<c;n~%" L viIP=1E (f),.

vV=n

Theorem 3. If feL (I1%) and 1<p<oo then

En (j)p é Cq ” In (j) -f” 2n/n,p é Cd,p En (_f)p
Theorem 4. If fe L (1% then

I, (D)=l S I (DS Nl 2mimn S ¢ E, (), log? (1 +n).
Theorem 5. If fe L  (I1°) and 1<p<q=<oo0 then

En (j)q é cd nd/p"d/q En (f)p‘

* Theorems 1-3 and Theorems A and B immediately imply

Corollary 1 (a similar result is proved in [4]). Let fe BY% (I1%) and let FeC (IT%)
be such that f=F a.e. on T1°. Then

1/n
En (F)pécd,k n-d/p j ép—1 Wy (_f, t)p dt
0

and
E,(F),=0(n"")<>E,(f),=0(n"*) <= w,(/, 3),=0(0") = 1,(F,9),=0(5"),

dlp<p<k.
Corollary 2.If fe L (I1%), then for every 0<p<k we have

E,(1),=0(n"") <>E,(N2nnp=0(n"") =1, (£, 3),=0(5").
_Corollary 3. If feL _ (IT1*) and 1<p< o, then

11,(N—f1l, S cap E (),

2. Auxiliary results

Let A,> A, be two quasinormed spaces. Peetre K-functional (see e.g. [6],
p. 54) for A, and A, is defined by (feA,, real t>0)

K(fit;40,A)=inf{[|f=gll 4 +t.11gll4, :9€A,}.
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The following lemma asserts that spaces L;, for a fixed & possess the
interpolating property, i.e. for the spaces L;,(6 —fixed) an analog of
Riesz — Thorin theorem (see e.g. [6], p. 10) holds.

Lemma 1. Let fe L (I1°) and 6>0. Then
P

® K(f;t; Lsps Lso)=K(f3:15 Ly, L )~[f (f3)* () ds]'?,
0

with equivalence constants depending only on d and p, where f;(x)
=sup {|f(¥)| : yeU (8, x)} (cf. (3)), and g* denotes the non-increasing rearrangement
of the function g.

Proof. The equivalence in (8) is well-known (see e.g. [8], p. 142).
In order to prove the equality in (8) We show first that

(9) K(j;t;Lé.,v Ld.cn)éK(f;,at;Lp, Lao)~

Let (see (3))
fi(x)=g,(x)+g, Sx), xell%, where g, e L ,(I1%), g, L, (TT%). Denote E = {y : yeIl*,
/OI219; |l ome)} and
JX) =192l o) S(X)/1f(x)] for xeE,,
Ni (x)=[
for xeIl’\E,,

J2 (x)=f(x)—f (x), xeIT*. Functions f, and f, are continued 2n-periodically to R.
Let us denote the §-neighbourhood of set E 7 by Eys={z :zell%, zeU (4, y), yeE,}.
From definition (3) of function f; and from |f(y)| = || g; | wme) for yeE , we have

(f1)s(x¥)=/5()— 192 |l o) for xeE 5,
(f1)s(x)=0 for xel'l‘\E,,,,,

/2l oy =119 | o rrd)-
Therefore (f=f,+f, and fy=g,+9,)
K(fit; Lsps L) SIS llspmdy +E 12 omdy= ILf3 5. pney+ 2 | g5 Il oo (redy
=207 | (f)s(x)Pdx)'"P+1 ] g, || wemay

Ers

=@m)~" [ (L) =192 1l0ms)’dx)""+t | g, || e,
EI'J

§((2n)—d5§ (f5(x)—g2(x)?dx)'"P+¢t | g, Il o (redy
1.8
=)~ | g,(xPdx)""+t (g, || wmd
Ers

=S gyl pmdy + £ 192 [l oo (idy-
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This proves (9) because of the arbitrariness of the decomposition fy=g, +g,.
Now we prove the inequality opposite to (9), i.e.

(10 K(f5st; Ly, L)SK(fit; Lsp, Ls,o).

Let f(x)=f, (x)+/f,(x), xeIl%, where f,e L, ,(IT%, f,e L, (I1%). To f we put
into correspondence the function f;(x) using (3) and define E={y :yell",

Lm0 ao(rld)},

g (x)=

I:f;s(x)_llfz lomdy for xeE,
for xel'Id\E,

g2 () =15 (x)—g, (x), xeIl". Obviously, 19 lwmdy= /2 | wmd)- Using | [ fl—lgll|
=lf—gll and g;(x)=1gllwmd), xeIl’, we get (f;=g,+4g,, [=f,+/5)

K(f5:t; Lp, L )=11gy llpndy+1 192 || ocndy
=(2m) gy ()P dx)"P+t || f3 || ey
E

=(2m)~1 £ s ()= 112l oquay)” %) P+ 1| f3 |l o mudy
=@m™ £ (s ()= (f2)s ()" dx) " + £ || f3 [l o undy
=@m™ £ (=25 (NP dx) P+t || f; | o a9y
=(2m)~* £((fl)& )P )P+t || f Nl comiay

S i ls.pandy +E 1L o udy -

This proves (10) because of the arbitrariness of the decomposition f=f; +f,. Now
(9) and (10) imply (8).

Applying the real method for interpolation to the couple (L;,o, Ls,p,),
1<p,<p, <00, and using the reiteration theorem for the real method for
interpolation (see [6], p. 66, 144) and the previous lemma, we get that an analog of
the Riesz — Thorin theorems (see e.g. [6], p. 10) holds for the spaces L;, with
different p’s.

Lemma 2. For every feL ,(I1%) we have

1° ||f||p(nd)§ ||f||o.p(n")§ (WAL o (M) = “'f"d,m(ﬂ");
2° 1 flls.pmd S 1 fllst iy, 6=6', pSPp’;

32 LG +h) ls.pady= 1S+ ) ll5,pidy 5

4° || £l ms,pondy =mY? || f || 5, pmady (natural m);
SN, =W 22 (1<p<o0).

2n+1 2n+1,p
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Proof. Properties 1°-3° immediately follow from the definitions of the
norms included. Property 4° is obvious (as an equality) for p=co. Therefore, in
view of the interpolation property of spaces L ; ,, the validity of 4° for every p will
follow from its validity for p=1. So we shall prove

“f“mé.l(ﬂd)émd ||f||.s.1(nd)-

Denote by e=(l1, 1,...,1) the unitary vector in R% Taking into account
property 3° of the same lemma, we have

1S lms, 1 vty = (27) = fd sup {|f(x+1)| :teU (md,0)} dx
I

<@2n)~ jd Z sup{|f(x—(m—1)de/2+5j+1)| :teU (5,0)} dx
néjen ~,

= N}Zd Q2m)~¢ j'dsup{If(x—(m—l)ée/2+5j+t)| 1teU(6,0)} dx=m" | fl|5,1 4y

Je m—1 n

-
In order to prove property 5° we note that x,eU (2n/(2n+ 1), x) whenever
xeU (2n/(2n+1),x;). Therefore, using that mes U (2n/(2n+ 1), x)=(2n/(2n+ 1)),

xeRY, we get

2n
2n+1’

Il 2 =[Cm)~¢ IdSUp{If(xH)l iteU( 0)} dx]'/?
I

2n+1

i 2
=20~ =, | sup {[f(x+1) :teU (2, 0)} dx] e

Jje NZ" U(2n/(2n+ 1.xj)

=[2n)~¢ 24 [} sup {|f(x;+x+1)| :teU(Z_n,O)}pdx]I/p
jeN’ "Uu@r/(2n+1),0) 2n+1

2[00 X, )P b =[en+ 1) S (S =f]
je~2n

2n

2n+1
JjeN,, ®2n+1

The lemma is proved.
In the sequel an important role will play

Lemma 3. If TeT¢ then

T lls.pny < (1 +6n)"P || T || perady.

Proof. For p=co this statement is obvious. We shall prove it for p=1 For
every xeR? we denote by ¢, this point from U (3,x): for which sup {| T (y)|
1yeU (0, x)} =| T (&) _Then we have_
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T lsa =Tl I=Rm)~° IJ(SUP{I Ty :yeU(6,x)} —| T (x))dx
n
=(2m)~* fd(l TEI-ITx))dx=2m)~* fdl T()—T(x)|dx
n n

<@m74f £ [ |D*T(x+v%|dv*dx

nd 21y o)

ag=0,1
=2m~* T [|D*T(x)|dxs"
@o™* 1D T(ldx
as=0,1
= la]{-] M D*T |1y = 3 @) | T llynay=((1 +0n)* = 1) || T || s ey
as=0.l as=0,l

where for the difference T(,)— T (x) we use the representation from [7], p. 114
(107) or a similar representation from [12] (the integration goes on these variables
from v=(v,,v0,,...,v,) for which the corresponding components of the multiindex
a are equal to 1). This proves the lemma for p=1, and the interpolating property
of the spaces L;, implies its validity for any p, 1<p=oo.

Property 1° in Lemma 2 and the last lemma imply

Corollary 4. Let TeT¢, Sn<u=const. Then
T ”p(nd)§ | T ”a.p(nd)§cd.u | T ”p(ﬂd)'

Using Bernstein inequality for trigonometric polynomials (see e. g. [11], p. 98)
from corollary 4, we get

Corollary 5. Let Te T?, dn<pu=const and let a be a fixed multiindex. Then
| D*T ”a.p(nd)écd.u n* | T |5, perady-

In the sequel we make use of the following properties of Fejer kernels (6).
Lemma 4 (see [3]). We have

(11) ®,4(t)=0 for teR?;
(12) D,4()=1 for teU (2n/n,0);
(13) | @ ll 1udy = (nsin® 7/2n)* < (1/2)*4/n = c,/n’.

3. Proofs of the theorems

Proof of Theorem 1. Let T*,T‘eT:b,g such that T* (x)< f(x) ST~ (x)
for every xeR?and | T*—T"~ H,,=E,. (f),- Then using Corollary 4 with 6=2n/n
and p=2n, we get

(14) En (.f)ln/n.pé En U)Zn/n.pé ” T+ -T" H2n/n.p§cd ” T+ -T~ ”p=cd En (.f)p'
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Now we shall prove the inequality opposite to (14), i.e.

(15) E,(Np =i Ey(N2nimp-

Let Q,eTy be such that || f—Q, ll2emp=E,(f2nmp- Set (cf. [3))

0 (/3 x)=Q, (%) £ (n/2n)’ ﬁfd ®,.4(x—1)sup {|/(»)—Q, ) : yeU (2n/n, 1)} dt.
ineq lL)J)i:'iieosusly (see (7)) QFfeTi. We shall show that for every xeR? the

(16) 0. (0= f()=00 (f5%)
hold. Indeed, taking into account (11), (12) and mes {U (2n/n, 0)} =(2n/n)?, we get

o, (f; x)=Q,,(x)+(n/21r)"r!d¢,.,,,(v)sup {I/0)—2, )| :yeU (2n/n,x —v)} dv

20,(x)+@m/2n)" [ ®,40)sup{|f(¥)—Q,()| :yeU Q2n/n,x—v)} dv

U(2n/n,0) .

2 0, (x)+(n/2m)* | f(x)— Q, (¥)| @n/n)! = @, () +£(x) — @, (x) =/ ().

The other inequality in (16), Q, (f ;X)=< f(x), can be proved in a similar way.
Using the generalized Minkowski inequality and inequality (13), we get

Qs —Qu llpnty=2 || (n/2m)* Idd’...a(x—t)sup{If()')—Q..()’)I :yeU@2n/n,0)}dt |,
n
=2(n/2n)! j'd D,.4(v) [(2m)~* Id sup {|/(»)—Q, ()| : yeU (2/n, x —v)}* dx]*/*dv
I n

=2n% | ®pally 1~ Qull2nsmp=Ca En () 2nmp-

Thus, in view of (16), we have
En (f),, é " Q: T Qn_ ”pé Cq En (.f)Zx/n,p

and this proves inequality (15) and completes the proof of Theorem 1.

Proof of Theorem 2. Let Q,eT? be such that E,(f),=f—Q, |l ad»
v=0, 1,.... Because of fe By} there is Fe C (I1%) such that f=F a.e. on R? (see [10],
[9], [4]). As

N
Z (Qn2v—Qn2v-1)=0Qn¥—Q, and || F—Q,,n|,— O(N - o),

v=1

we have ©

F(xX)=Q,(x)= Z (@n2*(X)—Qnz*~1(x))
1 :

ve=
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for every xeR“ Then, using Theorem 1 and Lemma 3, we get

E (F) <ch (F)Zn/n p_ch (F Qn)Zn/n p= cd ”F Q "2n/np

écd z ” QnZ"_QnZv—_1 ”21!/n.p

v=1

Scg T (14+2m.2)77 || Quev — Quav- 1l

v=1

Scgn™ " T (27 (|| Quav =S, + 1 /= Qu2v-11l,)
v=1

e e} a
=cgn~ " T (2P (Enzv (), + Enzv-1(f),)Sc,n™ 4% T jP~1E (f),.
v=1 j=n
Theorem 2 is proved.

Proof of Theorem 3. In view of Theorem 1 one only has to prove the
inequality (1 <p<o0)

(17) ”f_In(.f)"b!/n.pécp,d En(.f)p'
It will be a simple consequence of the inequality
(18) ”I (j)"Zx/np pd"f”Zn/np(1<p<w)

In order to establish (18) we make use of the fo]lowmg inequality due to
Marcinkiewicz (see e. g. [8], p. 46, where a proof for d=1 is given ; the case d>1
can be similarly obtained)

(19) I T, Scpall Tll for TeT? and 1<p<oo,

14
2n+l

of the equivalence of the norms || T||, and || T || 34/n,, for Te T4 (see Corollary 4)
and of the interpolation conditions I, (f, x;)=f(x;) for jeN4,. Indeed using (19) for
T=1,(f) and property 5° in Lemma 2 we get

Iy 2wmp=call InD oty Scap I NI, 5 =capllfll

2n+1 2n+1

§Cd,p AN 2n/(2n+ 1).p§Cd.p A1 2n/n,p*

This proves (18). In order to obtain inequality (17) we consider the
polynomial Q,eT5 for which | f—Q,ll2e/mp=E,(f)2zmp- Then

”f— In (.f) " 2n/n,p é "f_ Qn " 2xn/n,p + ” Iu (.f_ Qn) ” 2n/n,p é En (.f)Zn/n.p + cd.p "f- Qn "2:/n.p
§ Cd.p En U)Zn/n,p é Cp,d Eu (.f)p'
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Theorem 3 is proved.

Proof of Theorem 4. Because of || D, ||, =0(log(l +n)), taking into
account properties 1° and 5° from Lemma 2 and Corollary 4, we have

I 1, (N zasma S €l 1 (Nl imdy = ¢4 | Dpall 1,”f"21 =¢4 || Dp,s ”‘{ (A

2n+1 “2n+1
Zcyglog? (14+n) [ f 1l 20/2n+ 1)1 S cqlog? (1 +n) £l 27/m,1 -

Let polynomial Q,eT35 be such that ||f—Q,|l2xn1=E,(/)2xm1- Then

I =1, () 20m1 ENS—=Cull2mma + I Iy (f— Q) | 20/m.1
SE, (N anm1+cqlog? (1+n) | f—Qull 20/m1
<c log!(1+n)E,()znm1=c,log! (1 +n)E, (),

This proves Theorem 4. -

Proof of Theorem 5. Let QFfeT4, O, (x)<f(x)<Q,} (x) for xeR? be
such that Q)" —Q, |I,= E, (), Then, using Nikol'skii inequality (see [11], p. 132),
we get

E, (N, <105 — 0 lgScyn= 44| QF — Q7 ||, =c,n¥?~ 4 E, (1),

This proves the theorem.

4. Notes and remarks

4.1. Theorem 4 and Corollary 3 in the case of interpolating polynomials I,(f)
are analogs of the well-known inequalities for the L ,-deviations of the partial
sums of Fourier series of a given function f from the function f itself with the.
natural replacement of E,(f), with E, (-

4.2. In view of properties 2° and 4° Lemma 2 the norm || ¢ || 2./, is €quivalent
to the norms | « ||,n , With constant of equivalence depending only on x and d. In
particular one can set u=1. Thus, the statements of Theorems 1, 3 and 4 remain
valid if one replaces in them |« |2qn,p, With ||« l1/,(1=p=00).

4.3. Norms of the type of | * ||5,, have been considered in [2] where in another
way (using the retract theorem) the interpolating property of the spaces L, , for
a fixed 6 has been proved. i

4.4. An analysis of the proof of Lemma 1 shows that its statement remains
valid if one consider non-periodic functions and the d-neighbourhood U (6, x) of
a point x is defined in a way different from this one in (1). Thus, the interpolating
property of spaces of the type L; , ( fixed) takes place in more general situations,
for example if one consider U*(8,x)={y : ye[0, 1], |x—y|£/x(1—x)+ 8%},
x€[0, 1], instead of U (4, x).
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