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Quadrature Formulae for Entire
Functions with 2-Periodic Data

Dimiter P. Dryanov

Presented by P. Kenderov

Quadrature formulae with equidistant nodes involving 2-periodic data of not necessarily
consecutive derivatives are considered in the present paper. Theorem 4.1 answers the question of
existence and uniqueness of such formulae which have the highest degree of precision with respect to
entire functions of exponential type. The quadrature formulae of the highest degree of precision are
obtained without knowing the corresponding interpolation process.

1. Introduction

Quadrature formulae with equidistant nodes involving 2-periodic data of not
necessarily consecutive derivatives are considered in the present paper. Theorem
4.1 answers the question of existence and uniqueness of such formulae which have
highest degree of. precision with respect to entire functions of exponential type.
The quadrature formulae of highest degree of precision are obtained without
knowing the corresponding interpolation process. Former results of R. P. Boas
[2], R. Kress [5], P. Olivier and Q. I. Rahman [6] and the result given in [3]
are particular cases of our result. A representation of the remainder for functions
belonging to a certain Sobolev space is given.

2. Problem formulation

Let R be the real axis and denote by B,,; the set_of all entire functions of
ixponential typey which belongto L, (R). Further,let k=(ky, k;,...,km—1) and
k'=(ko, Ki,...okm, 1), O=ky<k,<k,<...<k,-; and 0=Zkp<kj<k<...
<k;n,—1 (m=1, m; 21) where k,, s=1, 2,...,m—1 and k}, j=1, 2,...,m, —1 are
integers. We shall denote by S the class of all complex valued functions which are
defined on the real axis R.

Suppose that for a function feS we are given the following 2-periodic
information:

21 j"‘s’(zzn), v=0, +1, +2,...,s=0, 1, 2,...,m—1,
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ﬂ*?(zv:ln), v=0, +1, +2,...,j=0, 1, 2,...,m;—1.

Let us determine the following expressions based on the data (2.1):
22) &= % ﬂ"a’(zz"), s=0, 1,...,m—1

V= —a

and

9= % ﬁ*ﬁ)(zv;“‘n), F0, Ly o3ty =1
The problem is to find a quadrature formula, determined by the 2-periodic
information (2.1) of the form

H 2n" t ey gy 2e™Tt dy
23) J swdxn T T ST B S
¢,, d; are complex numbers, .
so that this quadrature formula possesses highest degree of precision.

Definition 2.1. A quadrature formula of the form (2.3) has entire degree of
precision y>0, when it is precise for every function feB, ; and for every §>0
there exists a function geB, . ;  for which the quadrature formula is not precise.

We shall use HEDP for “highest entire degree of precision”, EDP for “entire
degree of precision” and Q. F. for “quadrature formula”.

The solution _gf this problem will depend on the number of even integers in
the vectors k and k’. Thus let @, and w; denote the number of even integers in the
sets {0=ko<k;<... <km-,} and {0<kj <kj <... <k -1}, respectively. Let o,
and wp denote the number of the odd integers in the above sets, so that
0, +wo=m and w,+wpo=m,.

3. Auxiliary results

Let g denote the Fourier transform of a function g. Further, let
k* =max (km-1, km, -1) and W%" BV be the usual Sobolev space with f*" e BV (R).
Let =0 be integer and ¢=(cy, C;,...;Cm—1) and d =(d,, dyseeeosd 1)

Lemma 3.1 (Poisson summation formula), [7). If feSNL,NnBV then for
every a€eR

<] 2k ~ikoa ] -] _
(3.1) I S+ =" 3 I fegetorax
where f(x)= Sx+0) ;f (x=0) for xeR.

Lemma 3.2 [4]. Let 0<t, <t,<... <t and m, <m,< ... <m, be distinct real
numbers. Then
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» tTr 172 ... tTe
(32) det |- - | >o.
g1 ;:,"2 ... t3e
Lemma 33. Let 0<t,<t,<t3<...< 0<b1<b2<b3<...<b,+,,l,

t
L)1
t6>0, bp20, my<m,<my<...<mgy, and ny,<n,<n3<...<n, , are real
numbers. Then !

Mo Lt —b} —bj2...—bin
e 32 L3 i by... by
sign(det | t3t 32 ... t3e —bji1 —b32 . —b';«l )

ooy taday - Tty (=D O bgh g (= 1F b3, . (— 1P 1B

g+ a+qy
t, 0 ...0 bo 0 0'I

m 1 q
(RTINS —bit -by2 ... —by1

+1 »,

=sign(det |31 72 Lt b3 b2 ... b1 | )=

my my Ma+1(__1\9+4; p"1 —1)2ta; p™2 —1)9+a "‘11
tq_+qltq+q1...tq,‘,’_ql( 1) 1bq+ql( 1) 1b¢+¢1'“( 1) 1bq+q1

=(_ 1)‘141 +aqy(qy +1)/2

Proof of Lemma 3.3. Let us denote the first determinant by D, and the
second by D,. By Laplace’s rule on determinants we get for the first determinant:
D,= 5 (_l)d‘it""(_l):l+xz+ +iqD(‘11'22:."':q)D(:’li'§::';;ql)'

l§i|<i2< <iq§q+ql
By Lemma 3 we obtain:

sign D(27 9= +1 and signD(1'? " o)=(—1)1"2" 7%, and
g a , + 1) .
because of T i+ X i,=(q q,)(¢;+q1+ ) e obtain
i=1 j=1

sign D, =(—1)91%9@1*12 The sign D, can be obtained using the same
arguments.
Lemma 3.4. For the existence an_(? the uniqueness of a formulu A (f, k, K, o,
o, ¢, d), ¢ =(co, €15 C25---5Cm-1), d =(dyg, dy,...,dm 1) Of the form
2 m—1 my—1 ’ , o
2% Lpe 2Ty g,{;ff:{,— | f(x)dx

0 s=0 a'ks e o Jj=0



30 Dimiter P. Dryanov

(3.3) _ /T % T % (ov)
s=0 M2o+1
ml—l d A,
+./2n o—}r (=1 f*?(ov),
j=0 I mzo+1

, d; are complex numbers, for some integer ® 20 and for every functlon fewt* BV

there are three possibilities:

1) If o<w,+w,—1 then the formula of the form (3.3) is not unique.

2) If o>w,+w,—1 then such formula does not exist.

3) If o=w,+w,—1 according to wy+wy two subcases exist:

a) if w0+woSw +w,—1 then this formula is uniquely determined and for ¢
and d we have the following:

= Co+3(ko)do- 1 8(0) 1 S(ko) 0 for ko>0

—¢,=0 for k odd and d, =0 for k, odd,

— ¢, and d; are real numbers for k, and K ; even and they are uniquely determined
by the system (3 11) for v=0,+w.—1.

b) if wo+wo>w +w,—1 then there are many formulae of the form (3.3) and
for ¢ and d of these formulae we have:

— ¢, for k, even and d; for k, even are real and uniquely determined by the
system (3 11),

— a necessary and sufficient condition for c,, d; for k,, k, o0dd to be coefficients
of the formula (3.3) is c, and d, for k,, k, odd to sattdy the systems (3.13) and (3.14).

Proof of Lemma 3.4. By Lemma 3.1 with a=0 and f** for f one gets

G4 = ﬁ:-g—ﬁ% S (voi)s Jon+/2n T % (ov).

vV=—0 vM2o+1
By Lemma 3.1 with a=;—t and f""l’for f one gets

3.5) %"ﬁ*ﬁ J2n 5 (= 1)"(vm)*1f(av)+ﬁ = f®(ov).

v=-o M2o+1

Multiplying (3.4) by ¢, and (3.5) by d; and summing them in s from 0 to m—1 and
in j from O to m, —1 we obtain the formula

m-—1
s Sy 2Ty Y4 s i w z ¢ T @ fov)
$s=0 4 (2 J 0

j=0 0‘ . v=—0
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ml—l o A m—1 A
+/2n T d; T ()@ fe+/2n T 2 [k (ov)
=0 v=-a =0 0% \aat

ml-l d A,
(3.6) +/2n T =& T (=1)f%(ov)
=0 9,

vi2w+1

By the formula (3.6) the following necessary and sufficient condition for the
existence of A(f, k, k', o, w, ¢, d) is obtained:
The equalities

c_lf) f(x)dx=./2=n mil s ; (iv)"sz(av)+,/21t MIZTI d; ;E (—1)"(iv)"§f(ov)
- s=0 v=-0 j=0 v=—o
(3.7) —Jan T fov) (m;:: ¢, liv)s +(—1)" m.‘z—ol d,(v)%)
v=—w s= Jj=

hold for every function fe Wt* BV.

Since Byp+1)1< W‘i* BV we can choose trial functions only from
Byw+1)1 and this will be important for the ngxt results. Let us choose the
functions f,(x) such that f,eCg [(n— 1)o, (n+1)a], f(no) #0 and f=f, for n=0, +1,
+2,..., +o. Because of f,€B,w+1).1 (by a modification of Paley-Wiener’s
theorem, (see [1]) after the substitutions f=f,, n=0, +1, +2,..., +® we obtain
the fo_!logving necessary and sufficient condition for the existence of the formula
Alf, k, k', 0, o, C, d): _,

The vectors ¢ and d have to satisfy the system:

Co+elko)do=1

m—1 my—1

T o, (fs+(=1)" I (iv)d;=0
(3.8) s=0 i=0

v==+1, +2,..., to

g0)=1, &(ky)=0 if ky>0.

Let c,=c,+ics, s=0, 1, 2,...,m—1 and d;=dj+idj, j=0, 1, 2,...,m; —1. Then
the system (3.8) can be splitted to the following two systems:
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co+e(ko)do=1
m—1 ky m—1 kg+1
'(— 1)Z vhs ne_ 1y 2 .
(3.9) ’fo C,( l) Vk""'f1 C,( 1) Vk
kg even kg odd
my -1 5o my -1 L il
e TS d(—1)E H =l B (=1 T =0
j=0 j=0
k) even K, odd
v==1, £2, £3,...,tw
and
ch+elko)ds =0
m—1 L m—1 ks—1
G10)| E (=17 ve+ T a(=1 7%
ks even kg odd
my—1 k} , my—1 k-1 ,
1 =) H— E d(=1) T =0
Jj=0 j=0
k) even kj odd
v=+1, +2,,..., to.

The systems (3.9) and (3.10) can be splitted to the following four systems which are
the necessary and sufficient condition for the existence of the
formula (3.3):

co+&ko)o =1
"2 )7 er(oty TE 2 w0
c— s+(—=1) T dj(—1)2 V=

(3.11) vso = J

ks even kj even

v=1, 2,...,0

co +é(ko)dg =0

m—1 k'vk "'l—l k',,vg’

T (=12 V(=1 I dj(—1)Zv5=0
(3.12) it =0 J

ks even k) even

v=1, 2,...,0
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kg—1 K

33

m—1 my—1 j—1
D Y1) V(=1 T dj(—1)Z =0
(3.13) ke =0

]

v=1, 2,...,0

m—1 kg+1 my—1 Ky

T (=12 V(=1 T dj(—1)Z V=0
(3.14) s=1 j=o

ks odd K, odd

v=1, 2,,...,0

The system (3.11) and (3.12) have the following matrix:

10 e 0 e(ko) 0 0
1 1 1 | =i -
k A ’ ki ,
(.15) (1 2 . g'ee oM 2t 2 o )
Do & o ) P
Ll 02 « o2 (=)o (1) .. (=1)° |
| — — _
o, w,
The systems (3.13) and (3.14) have the matrix:
1 1 O | =1 -1 -1
k ’, 5 K
29 2% .. 2% Y 2% 2 Yt
k ., K
(3.16) ( 3 3 L 3t 34 —3% _37a} )
kjy kjy kj“’o _1\@ Ky _1\e kj, 1\ Ko
Lo o 3_1&1)“’ (l)g (l)a:_l
— V"
w, @

By Lemma 3.3 using the systems (3.11) —(3.14) we obtain 1) and 3). It remains to
show that if >, + @, — 1 the formula of the form (3.3) for every fe W%" BV does
not exist. This follows easily because if w>w,+w,.—1 then the system of
equations (3.11) with v=1, 2, 3, ..., w, + ), is a homogeneous system with ,+ w,
unknowns and (by Lemma 3.3) whose determinant is non-zero. Hence co=dp=0
which contradicts the first equation cp+&(ko)do=1. This ends the proof.



34 ‘ Dimiter P. Dryanov

Corollary 3.1. If we are gwen k,k’,a>0 then max{w: w integer, A(f, k,k', o,
o, &, d) exists for every feWX" BV}=w,+a,—1.

Remark 3.1. Lemma 3.4 gives the error estimate for the Q. F. of the form
(2.3) in the space W%* BV.

4. Existence and uniqueno;ss for Q. F. of HEDP

The solution of our problem will depend on the number of even mtegers in
the vectors k, k' respectively o, and .
Our main result is:

Theorem 4.1. A. Q. F. of the form (2.3) has HEDP equal to (w,+ w.)o. More
precisely, we have the following situation:

) If oo +wosw,+w,—1thena Q. F. of the form (2.3) of HEDP exists and is
unique. The coefficients ¢ and d are uniquely determined by the conditions:

a) ¢ and d are real vectors.
b) c,=d;=0 for k,, k; odd. ‘
¢) ¢, and d; for k,, kj even are determined by the system:

co+elko)do=1, &0)=1, &(ko)=0 for ko>0
kg

m—1 l!l—l kl
T c(—1)Z Vs (—1) z dy(— I)Tv";
s=1

ks even ? k,

4.1)

v=1, 2, 3,...,0,+w.—1.

2) Ifa;o+wo>w + w,—1 there are many Q. F. of HEDP of the form (2.3). The

vectors & and d are coefficients of such Q. F. iff they satisfy the following conditions:
a) ¢, and d, for k,, k; even are real and uniquely determined by the system (4.1).
b) ¢, and ¢1 , for ky, k; odd satisfy the systems (3.13), (3.14) for o=w,+w,—1.

Remark 4.1. It is easy to see that in the case 2/c,=d;=0 for k,, k; odd
satlsfy (3 13) and (3.14). The coefficients c, and d, for k,, kj odd in the case 2) can
be imaginary.

Corollary 4.1. If in the Q. F. (2.3) we are free io choose the m—1 numbers
0<k,<k,<k;<...<k,_, and the m, numbersOSki,<k’,<k’2 . <K, -1 then
the Q F. with HEDP is obtamed when w,=m and w,=m,, and in thxs case HEDP
is (m+m,)o. Thus all elements in k and k' have to be even.

Proof of Theorem4.1. Let the Q. F. of the form (2.3) be precise for every
fe By, +o 1 Then for the given k, k', 6>0, ¢, d by (3.6) and Paley-Wiener’s

theorem [1] the condition (3.7) holds for every f€B,(, + a1 and v=0,+w,—1.
Thus ¢ and d satisfy the systems (3.11)—(3.14) with o =0w, + (i)'.—-l and this is
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a necessary and sufficient condition for the existence of A(f, k, k', 6, 0, + w.—1,
¢, d). Thus the systems (3.11)—(3.14) are a necessary and sufficient condition for
the Q. F. to be precise for every fi EBa(m,m;).x .

Let us assume the Q. F. possesses EDP equal to o(w,+®.)+7, y>0. We
choose the function f, with the following properties:

a) f*EBa(me+ml¢)+6.l ) 0<6 <min (79 0’).

b) £, (6(@, + @) =f, (— o(@,+».) #0.

But f,eW4* BV and by Lemma 3.4 the formula (3.3) is precise for f,, hence by
Paley-Wiener’s theorem we obtain:

2 m-—1 2 2 1—1
0== ,20% e+, I . T fax
@) =/ T 2 .+ o)+ (~ o, + o))
s=0
o ’zl & (— et L9 (0(00,+ )+ (= o0, + )]

=2¢§; 1 @@+ ) ( go L

kg even X
my—1

+ z d(—1)=e* (w,+w;)“3(—l)i).

k' even
The system (3.12) for o =w, + w,—1 gives ¢ =dj =0 for k, even and k) even. Thus
from (3.11) for w=w,+w, 1 and (4.2) the vectors ¢ and d have to satisfy the
system:

Co+8(k’)do—1

m—1 my—1 k’
4.3) T (- 1)2v*s+( y = d’(——l)zv“.i

s=0 J o

kg even k; even

v=1, 2,...,0,+w,.—1, o, +w,.

From the last w,+ ), equations and Lemma 3.3 follows c,=d,=0 which
contradicts the first equation c, + &(ko)d, = 1. Hence the HEDP of the Q F. of the
form (2.3) is (w,+ wy)o.

The conditions 1), a), b), ¢) and 2), a), b) follow by the systems (3.11)—(3. 14)
and Lemma 3.3. This completes the proof.

5. Examples

Example 1. Let k' =k. Then w,=w, and wy=w,, m; =m. The system (4.1)
can be written in the form:
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CO+d =1

m—1 k

(5.1) T (c,—d)(—1)* V=0, v=1, 3,...,20,—1
s=0

kg even

m-—1 k
T (¢ +d_,)(—1) V=0, v=2, 4,...,2w,—2.

s=0
kg even

Let 2a)o$2w —1. By Theorem 4.1 the Q. F. of the form (2.3) of HEDP equal to
2w,0 exists and is unique and c¢,=d,=0 for k, odd. From the system (5.1) and
Lemma 3.2 we obtain ¢,=d, for k, even and the system (5.1) can be written in
the form:

c 1
0=x=
(5.2) 2 .
m—=1 _2;
T (e, (—1)° vks=0, v=2, 4,...,200,—2.
s=0
kg even

The condition 2w, <2w,—1 is equivalent to the condition w,=<w,—1. If we
substitute 2%s*!c,=b, then the system (5.2) will be the system:

by=1
m—1 52.1
(5.3) T by (—1)" V=0
) s=0
kg even

v=1, 2,..., @,—1
and the Q. F. of HEDP can be written in the form

1!"'1

k) 4 Flk)
(5.9 x o (20_),‘ —- (e +f% jw f(x)d?c

and this is the result in [3]. In the paper [3] there are many examples which are
particular cases of Example 1.

Example 2. Let p be even and k=(0, p, 2p,...,(m—1)p), m1=m—1,
=(p, 2p,...,(m—1)p) thus ki=k;4,, i=0, 1, 2,...,m—2; w,=m, a), m—1,
cuo—wo—O From Theorem 4.1 the Q. F. of HEDP (2m—1)a' exists and is unique.
The system 4.1 can be written in the form:
co=1
m—1 "p
2z (c,+d)(— 1) 2v)y*P+c,=0,
(5.5) s=1
-'P
2 (cq —d,)(—l) 2v—1)P+c,=0,
s=1 )

v=1, 2,°3,...,m—1
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because w,+w,—1=2m—2. We will give a convenient way to compute the
coefficients (co, ¢y, €3,...,¢m—1) and (d,, d,,...,dp—1).
Let us consider the polynomials:

P AN G 1], 3] ]
69 p= T 0-gp=1+ 3 SN
_mt L (=1yIp8? (0
6D po)= T 0= G-t B SR
By (5.5), (5.6) and (5 7) one may write the followmg equalities:
(- 1) (c A ) (— 2Ol et
( )' ’ =4 geecey ’
(5.8)
7 o |p§P (0)|
(—1) ((‘,—d,)—(—l)'m!——, =1, 2,...,’m—1.

From (5.8) it is trivial to see that
),u+,,,z,IP‘e"’(O)HIPS”(O)I

c,=(—1 s=1, 2,...,m—1,

59) 2(sp)! ]
’ (sp) — | pisP)
4, = (— 1y +om P8 (0;I(sp1)1!38 O (12 me
For m=2 by (5.9) one gets:
1.1 1.1
er=(= 172 S+ 1), dy=(=1*72 2 —1)

and the Q. F. of HEDP=3¢ will be the following:

( 1)1+p/2 1 )l+p/2 1

(610) [ foxn 2 (7, 0+ S+ T s

Example 3. Let p be even number k= =(, p, 2p,...,(m—1)p), m,=m,
=(p, 2p, 3p,...,(m—1)p, mp) thus ki=k,+p, i=0, 1, 2 ,m—1. Then
(o,=w;=m, wo—wo =0 and by Theorem 4.1 the Q. F. of HEDP equal to 2mo
exists and is unique. We will give a way to compute the coefficients (c,, c,,
CasevvsCm—1) (dy, dz, ds,...,d,). The system (4.1) can be written in the form
(w, +a),—1—2m— 1):
co=1
m-—1 mp
(5.11) Z (c,+d)(— l) vy +d,(— 1) @2v)"P+¢c,=0
s=1

v=1, 2,....m—1
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m—1 bl mp

T (,—d)(—1)* @v—1yP—d, (—1)> @Qv—1)"+c,=0

s=1

v=1, 2,....m—1, m

Let us consider the polynomials:

17 )
I, (x)= ,UI(I-(ZS 1)») 1+z( s
(5.12)
" (x) s=1 l—w
L=, ) +(~ " F[2m—2)1117d, )
m-—1 sp. s—1)p)] .'"_p
=147 (Ol Cppeme P om0 Ol )7 e

s=1 (sp)! ((s—1)p)!
It’s easy to see I1,(2v—1)=0, v=1, 2,...,m and II,(2v)=0, v=1, 2,...,m— l
From (5.11) and (5.12) one may write the following expressions for ¢ and d:

m—1+mp |ngnp)(0)| — =1+m 1
i (mp)! == plz[(zm—l)!!]"

[P )] _ [rE~ PP )] 2m—2)!1
(sp)! [(s—Dp]! ‘Cm—111" "
s=1, 2,...,m—1
|TI§P (0)]
— 1+p/2)!1 779 VN1
(—1yt+e T
Let us take the case m=2, E=(0 p) k' =(p, 2p). Then

d,=(—1

¢, +d,=(— 1y +p2)

(5.13)

1
My(x)=(1- x")(l—-—) 1— (l+3p)x"+ x?? and r(x)=1— =
For the coefficients we obtain by (5.13):

1
L=(=1P*1 5 etdy=(= 25— Op),

3"’
(5.14)

1
—dy=(=1)" 2 (14 3))

Hence for (cy, c,) and (d,, d,) one may write the following:

Co=1, e=(=D (1o =
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y

1.1 1 1
d1=(—l)l+p/2§(§—l—§"(§)’), d2=(—l)p+1§—p'

For p=2 we will obtain

11 47 1 .
co=1, ¢y =54, dy=— 75, d;=— and the Q. F. of HEDP 4o will be
‘v 2= 11, 47 L 1,
(516) _Im f(X)dX~ p= (fc.e+24o_z f:r.e 720’2 fs:. 90"f£})).

Example 4. Let m=1, m;=1, k =(0), k'=(21), o, =0.=1, wo=wp=0.
Then by using  Example 3. for m=1 or the system (4.1) we obtain for the
coefficients ¢, and d,:

co=1
CO—do(_l)1=o, lgl
and the Q. F. of HEDP equal 20 will be the following:

=1
I,

(5.17)

(5.18) _af S (x)dxz%(ﬂ,,+
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