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Translation Invariant Radon Transforms
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E.T. Quinto proved that for a generalized Radon transform R on R" the translation invariance
of the operator R'~ R implies the invertibility of R. In this paper an other concept of the translation
invariance is defined. We mvamgte the relation of these two concepts and determine the translation
invariant Radon transforms to be a certain generalization of the Tretiak-Metz exponential Radon
transform. Finally we give inversion formula and prove the support theorem for these transforms.

1. Introduction

Since in the first part of this century Radon created the classical Radon
transform on points and lines in R? several new Radon transforms was invented
and two main ranges of the investigations of the Radon transforms have been
developed. In the first one the Radon transforms are concretely considered [2]
while in the other the classes of the Radon transforms are studied [6]. Our paper
belongs to the second ranges. We investigate the class of translation invariant
generalized Radon transforms on R".

Our concept for translation invariance is based on the well-known identity
Rf,(w, p)=Rf(w, p+<{a, o)) for classical Radon transform [2]. There is another
concept in [6], where Quinto defined the translation invariance by the translation
invariance of R'° R. However, it is obvious that Quinto’s definition covers a larger
class in general than ours, we show out that the double fibration model to
construct the generalized Radon transform introduced by Gelfand and used in [6]
restricts his results for a smaller class.

One goal of this paper is to prove in Section 3. that the translation invariant
Radon transforms, by our concept, are not other but a certain generalization of
the Tretiak-Metz exponential Radon transforms.

Our another goal in Section 4. is to give inversion formula, which proves the
injectivity of our transforms, and the so-called support theorem.

These latter results are only known in dimension two [3, 8] and may prove
useful in the practice as A. Markoe [5] proved that the inversion of the variably
attenuated X-ray, which occurs in single photon emission tomography, can be
reduced to the inversion of the exponential transform. See [7] for application in
diagnostic medicine. On the other hand, the exponential Radon transform can be
regarded as a first order approximation to a general attenuation.
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2. Preliminaries and definitions

Let ueC®(R"xS""!xR) be a strictly positive function such that
u(x, o, p)=u(x, —w, —p). Then the generalized Radon transform is

(1) R,:D(R)->D(E""'xR), R,f(@, )= | f(X¥)u(x, o, pdx,

H(w,p)

where H (w, p)={xeR": (x, )= p} is the hyperplane with normalvector weS"~?!
and distance P from the origin. dx is the surface element of H(w, p) and {.,.) is
the standard inner product on R™".

Let 2eC®(R"xS" ! x R) be a strictly positive function such that A(x, o,
p)=A(x, —w, —p). Then the generalized dual Radon transform is

(2) R;:D(S"" ' x R)»C®(R"), R%f (X)=s"_f_ J(@; {0, ))x, o, <, x))dw,

where dw is the surface measure on S"~!. One can see here that our startmg
situation is more general then E. T. Qulnto s at (20) and (21) in [6]).
We call a generalized Radon transform exponential if

Hx, ©, p)=p,(®, p)xexp({u (@), x)),

where p,eC®(S"~! x R) and uz:S"'lc—f R". Similarly R} is called exponential if
Ax, o, p)=2,(@, p)x exp({i,(w), xD),

where 1,eC®(S"!xR) and 4,:5""*S R".

Now we present our concept for translation invariance of generalized Radon
transforms. Our idea is based on two simple observations on the classical Radon
transform R and R’ (see [2] and [4]):

Rf,(®, p)=Rf(w, p+ (w, a)) and (R'f),=R'(f(®, p+<w, a))),

where f, denotes the translation of the function f with aeR". The following
definitions generahze these properties. We call R, respectively R} translation
invariant, if there isav respectively n in C“’(R"xS" !x R) for whlch

R, fi(®, p)=¥a, o, P)R,f(w, p+{w, a))
respectively
(R3N).=Ri(f(@, p+<w, ad)n(a, o, p)).

In the classical ¢gase v=n=1. At the same time it is obvious that if v=# then the
operator R'°R is translation invariant.
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3. Determination of the translation invariant transforms

Theorem 3.1. The generalized Radon transformation R, on CZ(R") is
translation invariant if and only if it is exponential.

Proof. Because of the simplicity of the sufficiency we only prove the
necessity. It is immediate from our definition of translation invariance that
3) Wx—a, o, p)=wa, o, pux, o, p+<{w, a)),

where xe H(w, p+ {w, a)). Let a=aw+ pd, and x=pw +a+ kd,, where &, and
@, are perpendicular to weS™~!. Taking k=0 one can reject Wa, w, p) from (3).
For a=0 and @,=d, the result is
Hpo+(B+K)d,, », p)_ppw+Pd,, ®, p) Wpw+kd,, @, p).
upw, w, p) upw, o, p) Hpw, o, p)

Thus the map

B —ulpw+pod,, o, p)/uprw, o, p)

is a continuous homomorphism from (R, +) to (R,, *) and so we have

Hpw+ pé,, o, p)=p,(w, p)exp(Bi(d,, », p)),
where /i, (», p)=u(pw, ®, p). Writing back this formula into the previous equation
and letting @,# @, we get the linearity of # in its first parameter i.e. ﬂp(w,, w,
p)={pa,, uz(co p)) where fi,(w, p) | . Again let a=aw and write back u in its
present form into (3). We obtain

iy (@, p)exp (Kkd,, f(@, p)))=vaw, ®, p)i,(w, p+a)exp(Kkd,, (o, p+a))).
Because of the dependence on k this 1mphes the orthogonahty of @, and
fiz(w, p+a)—jiy(w, p). Since ji, | @ and @, is arbitrary in w!, the orthogona.l
complement of w, this yields to the independence of ji; from its second argument.

Let fi,(w)=f,(®, 0), A;(0)eC(S" ™), (@)= fi;(w)+wf,(w) and p, (o, p)=f, (o,
p)exp(—piji,(w)). Then we conclude

Hx, o, p)=p,(@, p)exp({u,(®), x>),
~which was to be proved. :
Theorem 3.2. The generalized dual Radon transformation R, on C2(S"~! x R)
is translation invariant if and only if it is exponential. '
This theorem can be proven by imitation of the previous proof so we leave it

to the reader. The following theorem shows how to choose R’ so that the operator
R°R, is translation invariant. :

Theorem 3.3. If R, and R, are exponential, the operator R’ ° R, is translation
invariant if and only if p,(w, p)).l(w p) does not depend on p and u, (w)+}.2(w) 0.

Proof. It is clear that R} ° R, is translation invariant if and only if v=n i.e.
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By ((D,' p) €xXp (< — K2 ((D), a>) _ Al (w9 p + <as (D)) €Xp (('12 (CO), a>) .

I‘l(w9 p+<aa (D)) - J'l(a)’ a)
Let a=aw+ fd, where @ | @. The dependence on B gives our second statement
from which the other statement of the theorem easily follows.
We note here that E. T. Quinto has got by his Proposition 4.1. of [6] the
following formulas in (20) and (21) for the translation invariant Radon transforms

20*)  Rf(@, p= | fX¥)u(@, p)exp((z, x))dx,

H(o,p)
o _ R, C)
@1%) Rfx)=expK~z, ) [ flo, <o, X)) = —~do,

where we used Quinto’s notations and u,(w, p)= J m(0)a(w)/n({w, p)). Since z is
constant this is clearly less general than our formulas. In the proof of the following
theorem we will show the point where the double fibration model, used by
Quinto, simplifies his result.

Theorem 3.4. The operator R ° R, is translation invariant if and only if for all
yeR" and weylnS"~! the ﬁmctlon
Alx, o, @, x))(u(x+y, o, (o, D)+p(x—y, o, (o, x))),
does not depend on x for x | y. ‘

Proof. We follow Quinto’s method and notations [6]. Let K be SO(n), L be
the isotropy subgroup of e,=x/|x| and M be the isotropy subgroup of

eeS" ! n el . Furthermore let dk, dl and dm be the invariant measures on these
groups with total measure one. Then

R°R,f(x)=C I I I ("™ 2 f(x +rkle)A(x, ke,, (key, x))u(x +rkle, ke,, ke, x))) dl dr dk,
where C=| 5"~ 118" 2|. Let a(x, y, ®)=A(x, o, {@, xD)u(x+y, o, {o, x)). Using
a, reversmg the integrations with respect to d and dk, the substitution kl~! for
k gives

Ri°R, (X)=CI I(r""f(X+rke)é(x, rke, ke,))dk dr

by the right invariance of dk. Let dk, be the K invariant measure on K/M
satisfying dk=dm dk,,. Then

. @) R3°le(x)=Cj j' (r"'zf(x+rke)jﬁ(x, rke, ke,)dm)dk, dr.

The inner integral over M multiplied by |S"~ 2| is clearly the integral of
a(x, rke, ke,) over the great sphere S"~'nH(ke, 0) in its standard measure. We
denote it by d(x, rke, ke). Thus we have
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9) Rie R,f()= §, flx-+)ax, y,r )N 1dy.
R

Using the translation invariance and evaluating R3°R,f on two specific
distributions Quinto proved that

(6) a(x, 0, w)=4(0, 0, w) and if x | @ then 4(x, ro, w)=4(0, row, w),

where weS" . Writing the second equation into (5) one can easily see that these
equations are not only necessary but sufficient too. At the same time the second
equation clearly implies the first one.

Since the transformation ¢*’ is invertible on even functions of weS"~! [2], the
first equation of (6) is equivalent to a(x, 0, w)=a(0, 0, w)=a(w). Using the
speciality of the double fibration model Quinto could calculate the measure
u here, substantially from the square root of a. We can not do this in our
situation.

Unfortunately the integrand in the second equation of (6) may be not even
and so it is equivalent to the even part of the integrand being zero. This is just the
condition in the theorem.

One can easily find u and A for R} ° R, being translation invariant, but no R,
nor Rj are exponential if 4 and A are allowed to be not strictly positive. For
example u(x, , p)=cos({x, p(w))) and Ax, ®, p)=1/cos({x, ¢(w))), where
@(w) | . But ifIinsisted on the strictly positivity ofy  and 4 I could only find the
exponential x4 and A4 while I was unable to prove the uniqueness of this type.

4. Inversion formula and support theorem

Let R, and R) be exponential i.e.
R (@, )= | Sf(X)uy(@, p)exp({uy(@), x))dx,

H(,p)

RY(x)=exp({—2z, x) I; fl, <o, x»exP«I‘z(w): x))
st

m(o, (o, x))

We know then that the operator R%°R, is translation invariant on CZ°(R").
Furthermore one can easily prove that R} ° R, is continuous map of C° (R") into
C®(R". Thus there must exist a temperate distribution T [1] for which
R ° R, f=T = f, where * is the convolution operator. This gives inversion formula
through the Fourier transform F [1] as

@) f=Ri°R,f+*F~'(1/FT).

Theorem 4.1. If R, is an exponential i.e. translation invariant Radon
transform, then R%°R, is invertible on C (R") with the formula (7), where

Tx)= [ exp(uyo), x))do.

sn-'zl,
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The proof of this theorem is immediate from (5) and left to the reader.

To finish the paper now we prove the so-called support theorem for translation
invariant Radon transforms. Our proof is a generalization to higher dimensions of
A. Hertle’s proof [3].

Theorem 4.2. Let R, be exponential Radon transform and f be a Lipschitz
continuous function of compact support on R". If r>0 and R, f is supported in {(o,
p)eS" ' xR:|p|=r}, then f is supported in {xeR":|x|<r}.

Proof. If U is a rotation, then R, foU=R;(f°U), where ji, =p,°U and
f,=U"1eopu,°U. Since ji is also exponential it suffices to show that f is zero on
every hyperplane perpendicular to the first coordinate axis with x, =p>r. Since
U, is strictly positive we can omit it. Thus it remains to prove

@®) | xf(x)exp((py(@), x))dx=0  1<i=n,

H(w,p)

where w=(1, 0,...,0) and x=(x,,...,X,). Then by induction the factor x, can be
replaced by any polynomial in x,,...,x, that implies f=0 on H(w, p) by the
Weierstrass theorem. To show (8) let U £ be the rotation in the plane of the first
and i-th coordinate axis by angle ¢ i.e.

UL(Xy,.nsX)=(X, COSQ+X;SINQ, X5,...,Xi—1, —X; SINP+X;CO8 P, Xi415-05X)
Differentiating the equation R,f(U ;, ®, p)=0 with respect to ¢ and putting ¢ =0
we obtain for i=2 that
0=[—x;0, f(x)+pd; f(x)] exp ({u; (@), x))dx
+[ f(x) exp (Kpz (@), X)) [€0; 1y (@), x>+ pp—x; p3] dx,

where the integration is over H (w, p) and p} is the i-th coordinate function of u,.
Let the left hand side function in (8) be denoted by f;(p). Then this result gives the
differential equation system .

d n j
Eﬁ ») =j§2 0; 12 (0)f;(p),

from which

(> (@), -- - »Jn (p)) = (vector) exp ([0, 5 ()] p)

follows for all p=r, where [0; ub ()] is (n— 1) x (n— 1) matrix. Since the left hand
side has compact support so does the right hand side too, i.e. vector=0 and the
theorem is proved.
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