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A finite semigroup S is called a m,-semigroup if the order of the set n(S) is equal to n, where
n(S)={|T1>1/2|S|: T forms a proper subsemigroup of S}. The characterization of n,-semigroups was
established in [1]. Some questions about the =,-semigroups will be discussed in the present paper.

1. Preliminaries

The order of a subgroup of a finite group is one of the most basic concepts of
the theory of groups, and there are many research work on it. In the theory of
semigroups, the similar questions were considered; in fact, at the first All-Union
symposium of the theory of semigroups in 1969 in Sverdlovsk Schein [12] raised
the question of finding the orders of subsemigroups of the symmetrical semigroup
.. and partial results have been obtained by K.Todorov [2-4], as well by
K.H.Kim, F. W.Rouch [5-6]; at the same time, the question of determining the
finite semigroups in which the orders of its subsemigroups satisfy some conditions
was raised. And this paper belongs to the latter.

In the theory of finite groups, Lagrange’s Theorem shows that the order of
a subgroup of a finite group is a divisor of the order of the group. This theorem, in
general, doesn’t hold for finite semigroups. The question to determine the finite
semigroups in which the theorem holds was raised in the paper [7], and such
semigroups were called Lagrange semigroups (L-semigroups). Two years later, the
same question was raised and all of L-semigroups was found in [1]. The types of
local L-semigroups were determined in [8]. An L-semigroup of course contains no
proper subsemigroup of order greater than the half of the order of the semigroup;
for the converse, the characterization of L-semigroup, which was established in
[1], follows that a finite semigroup S must be an L-semigroup if S contains no
proper subsemigroup of order greater than 1/2|S|. The present paper will discuss
the finite semigroup which admits at least one proper subsemigroup of order
greater than the half of its order and such subsemigroups have the same order.

We adopt the notations and terminologies of J. M.Howie’s book [9]; in
addition, for a semigroup S and ecE(S) we denote n(S) as the set {|T]>1/2|S|: T
forms a proper subsemigroup of S} and Tor(e) s the set of element xeS satisfying
e=x" for some neN, and we say the subset A of S is a minimal set of generators of
S if S={A) and S # {(B) for any proper subset B of A.
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Definition 1.1. The finite semigroup S is called a n,-semigroup if the order of
the set n(S) is equal to the number n.

In essence the object of the paper [1] and [7] was m,-semigroups, and in what
follows we shall determine the =,-semigroups under certain conditions.

2. Some preparations

At first, we prove a conclusion about the periodic semigroup:

Theorem 2.1. Let S be a periodic semigroup with a finite set X of right
identities, then, for any subset Y of X, there are the following:
' (1) v Tor(y) forms a subsemigroup of S and is isomorphic to .#[Tor (e); I, J],

1={1, 2., 1N}, J={1}, eeX;
(2) S— U Tor(y) forms a right ideal of S;

Y
() Y=X if and only if S— U Tor(y) forms a proper ideal of S.
yeY

Proof. (1) Let aeTor(e) and beTor(f) for any e,feY, then - there exist
m,neN such that a™=e, b"=f. Since Sab = Sa*bh = ... 2 Sa™b=Seb=Sb = Sbh?

.2 Sb"=Sf=S, S(ab)"=S for any number reN and so there exist he X and
keN such that (ab)*=h by the assumption. For the element h, on the one hand
eh=e by Sh=S, on the other hand eh=e(ab)* = (ea)b(ab)"“ =(a™a)b(ab)*~!
=(aa™)b(ab)* ! —(ae)b(ab)" ! —ab(aby*~!=(ab)*=h, hence e=h. This shows
abeTor(e), and so u Tor(y) forms a subsemigroup of S. Moreover,

a= af (sincefe X)= ab"—-abb" ‘e( v Tor(y))b( v Tor(y)) this shows u Tor(y)

is a simple subsemigroup. It’s easy to verify that -u Tor(y) is 1somorph1c to

M[Tor(e); 1J], I={1, 2,..., [Yl}, J={1}. "7
(2) Clearly, Sa=S for any ae u Tor(x) and ( U Tor(y))a_ u Tor (y) by the

assumption and the preceding conclusnon, henoe (S— v Tor(y))( v .Tor(x))
=S— u Tor (y); moreover, by the assumption Sa=S if and yonly if aeer Tor (x)
and so S(S - v Tor(x)) S— u Tor(x). So (S— U Tor(y))S= S— u Tor(y)
that is, S— u Tor(y) forms a nght ideal of S. =Y

(3) By the assumption it’s easily verified that St=S for teS if and only if
te U Tor(x), hence S(S— U Tor(x))=S— U Tor(x). From (2) it is proved

X xe X xe X
S-—“u Tor(x) forms an ideal of S. The conclusion obviously holds.

xe X
Now some kinds of semigroups will be presented and they are very important
in our discussion:

Definition 2.1. For a semigroup S and its isomorphism @ into another one,
we denote R(S, 6) (resp. L(S, 6)) as the semigroup SUK(S), where the operation is
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defined by declaring x6(y)=xy and O(x)y=0(xy) (resp. xy)=0(xy) and
(x(y)=xy) for any two elements x,yeS, and keeping products as they are
otherwise. '

Definition 2.2. For a periodic monoid S and two natural numbers m and n, if
m x n matrix P=(p;) over the subgroup Tor (e) where e is the identity of S satisfies
the condition:

(P1ipji' Pi)a=a(pyip;i ' pj)=a
for any aeS—Tor (e), then U(S, P,m,n) denote the semigroup
' M [Tor(e); 1, J, PJu(S—Tor (e)),

where I={1, 2,..., n} and J={1, 2,..., m}, the operation is defined by the rule
that (g, i, Ja=p,:gp;: a and a(g, i, j)=ap,:gp;, for every i€l, jeJ, geTor (e), and
aeS—Tor(e), and keeping products as they are otherwise.

Definition 2.3. The small monoid (See [10]) S=Gu A where A is a completely
simple ideal of S and G is the group of units of S, is called a G-monoid if G is
maximal in S yet.

Clearly, for every group G there at least exists a G-monoid (in fact, G° is
a G-monoid); and for a completely simple semigroup A4, it’s not necessary to exist
a group G such that S=GuA forms a G-monoid.

Example 2.1. Let A=.#[D; I, J, P] where I=J={1, 2, 3}, D is the
dihedral group of order 10 presented by D ={a, b; a®*=b?=(ba)>=e) and P is the
following matrix: :

e e e
e a a°
e a* b

then the standard group of units of A is trivial and so, by Proposition 5.10 of Ch. 3
of [10], the small monoid S=GuUA must have the products: xg=gx=x for any
x€ A, geG. Evidently, G can not be a maximal subsemigroup of S. This shows that
there exists no G-monoid in the form of GuUA.

About G-monoid we have the following:

Theorem 2.2. Let A=.#[H; I, J, P), then A can be seen as an ideal of certain
G-monoid if and only if there exists a group G containing two subgroups K and L,
and a map ¢ of G into H such that

.(1) H=<o(G)>; (2) I|=[G:L]}, J=[G:K];
(3) o(kgl)=p(k)p(g)p(l) for any keK, leL and geG;
@ pu=(0(k))" @lllX(l) ", where G= Uk L=U Kk;, P=(p)

Proof. If A can be contained in a G-monoid S as an ideal, then S=GUA by
the definition. Now we let p,;=pj;;=e for every iel, jeJ, and so g(e,1,1)
=(g), Y(g), 1) and (e, 1, 1)g=(¢(g), 1, x(9)) for any geG. These for formulas de-
fine three mappings of G, ¢ into H, § onto I, and y onto J. Since S={G, (e, 1,1))



84 Shi Mingquan

n—1 .on
and I (g;(e, 1, D)g,=( IT ¢(g,), ¥(9,), x(9,)) where g;€ G and neN, H=<¢(G))

i=1 i=1
and I=y(G), J=x(G). Now consider the subsets of G: K={geG:x(g)=1}
and L={geG:y(g)=1}, it is easy to prove that K and L form two sub-
groups. Furthermore, (gl)e, 1, 1)=(¢(gl), Y(g)), 1) and g(lle, 1, 1))=g(ep(), 1, 1))
=(p(ge(), ¥(g),1), from which follows ¢(gl)=¢(g)e(]); as the same reason,
o(kg) = p(k)p(g), and so @(kgl)= @(k)p(g)e(l), where geG, keK and leL. Clearly,
for f, geGyY(f)=y(g) is equivalent to g~ !feL and x(f)=x(g) is equivalent to
af “'eK, these imply |I|=[G:L], |J|=[G:K]. Moreover, from the equation

(e, 1, 1)}fg)e, 1, 1)=((e, 1, 1)f)gle, 1, 1))
where g, fe G, we have ¢(gf)= (@)D g s)@(f), that is,
Prawt 5y =(0(@) " olaNe(N) .

Hence the condition is essential.

Now we prove the direct part: on the set S=GuUA we define an operation by
declaring g(h, i,j)=(p(glXe(1))"*h, Y(gh).j) and (h, i, j)g=(h(e(k;) ' o(k;g)i,
x(k;g)) for every geG, heH, iel and jeJ, where y(g)=i if gel,L and yx(g)=j if
geKk;, and keeping products as they are otherwise. It is easy to check
associativity and S=<{G, x) for any xeA, this shows S forms a G-monoid.

This completes the proof.

In the preceding proof a kind of G-monoids was made, and the theorem also
shows that every G-monoid is isomorphic to one constructed in the manner.
G-monoid is closely related with the object of this paper, and it is one of
important material used for constructing m,-semigroups.

3. Some Simple Results

In the =, -semigroups with some special conditions will be determined.

Theorem 3.1. S is a simple m,-semigroup if and only if S is isomorphic to
M [G; 1, J; P], Max {|1|, |J|} =3, or Max {|I|, |[J|} =4 and Min{|I|, J|} =2, G is
a finite group.

Proof. Let S=.#[G; I, J; P] be a finite semigroup, then S contains only the
subsemigroup in the form of # [H; K, L; Q] with H a subgroup of G,K =1,
L<J and Q a submatrix of P. If Max{|l|, |J|2)=3, it is easy to check
n(S)={2|8|/3}; if Max {|I|, |J|} =4 and Min {|I|, |J|} <2, then n(S)={3|S|/4}. Hence
the condition is sufficent. For the converse, if S is a #,-semigroup, we can suppose
Max {|I], |J|}=|I|=3 by the conclusion of [1]. Ciearly, for m=(|I|-1)|S|/|1|,
=281, ((J1=0ISl/W1, or (Il—1)J1—1ISI/[|J], S must contain a sub-
semigroup of order equal to m, and so 11:(S)={(|I|—1)|S|/|I|2. Hence
n-=2/M =172, (1= = DAII£1/2, and ((J|—-1)/J|=1/2 or =(I|=1/I|,
that is, |I[|]=4 and J=<2 or |I|=3. This shows the condition is essential.

Theorem 3.2. S is n,-monoid if and only if S is one of the following types:
(1) the non-simple monoid of order 3 or 4;
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(2) Z,-monoid of order 2p, p a prime;

(3) Gu{x}, xG=Gx=G, x>*=x, G a finite group admitting no subgroup of
index 2;

4) <a, b; a=a*f*!, b=b?*', ab=ba=>b), p a prime;

(5) G-monoid of order n<2|G|, G a finite group containing only the proper
subgroup of order =<(|G|—1/2n) or =(2|G|—n).

Proof. It is enough to prove the essentiality.
Let e be the identity of S and assume |S|>4, then Tor(e) forms a subgroup
and S—Tor(e) an ideal by Th.2.1. We divide the argument into three cases:

Case 1. |Tor (e)] = 1/2[S]|. At this time, n(S)= {1/2|S|+ 1} since {e} (S — Tor (e))
forms a subsemigroup; moreover, TU(S —Tor (e)) also forms a subsemigroup for
every subgroup T of Tor(e), this shows Tor(e) must be a group of order p,
p a prime. Let I be the minimal ideal of S, then I=S—Tor(e): in fact, if
I #S—Tor(e), I={f} since IuTor(e) forms a proper subsemigroup of order
greater than 1/2|S| and =(S)={1/2|S|+ 1}. For any xeS— Tor (e), if there exists an
element aeTor(e) such that f=xa, then xTor(e)=x(aTor(e))=(xa)Tor(e)
=fT or(e)=§ f ?; if there is no element ae Tor (e) such that f=xa, xTor (e)={x}
since |xTor(e)/<|S—Tor(e)—I|=|Tor(e)]—1. Therefore xTor(e)< {x}ul, and
Tor (e)x ={x} U I by the same reason. And there must be a proper subsemigroup
Z of S—Tor(e) such that ] =« Z < S—Tor(e) by the result of [1], clearly,
Z U Tor(e) forms a subsemigroup of S. This contradicts the assumption, hence
I=S8 a’)l‘or(e). If S—Tor(e) is a group, S is of type (4); otherwise, S is of the
type (2).

Case 2. [Tor(e)]<|S—Tor(e)]. At this time n(S)={|S—Tor(e)]} and so
Tor(e)={e} since {egu(S—Tor (e)) forms a subsemigroup. Clearly, S—Tor/(e)
contains no subsemigroup of order =1/2|S|, that is, n(S—Tor(e))=Q , hence
S—Tor(e) is an L-semigroup by the result of [1]; moreover, it is evident that
S—Tor(e) contains no subsemigroup of order equal to 1/2|S—Tor(e),
consequently, S—Tor (e) forms a finite group admitting no subgroup of index 2,
and S is of the type (3).

Case 3. [Tor(e)| >|S —Tor (¢)]. Clearly, S—Tor (e) is the minimal ideal of S,
and Tor (e) is maximal in S, hence S is a Tor (e)}-monoid. Evidently, S is of the
type (5).

Example 3.1. Here we give a semigroup with its Cayley table, and it is of
the .type (2): (See [13], or see [14]: NR.158)

1 2 4

W= Wn|W
H D H DA S
W H W =W
a SN

4 6

= RV NI
N—~ O WnhawW
MDD

Theorem 3.3. Let S be a finite semigroup with right identity, apd not a monoid.
Then S is a m,-semigroup if and only if S is one of the following types:

(1) the non-simple semigroup with right identity of order 3 or 4, and not
a monoid,
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2 AI[G; I, J; P], I|=1, |J|=3 or 4, G a finite group;

(3) R(T, 6), T a G-monoid of order 3|G|/2, G a finite group admitting no
subgroup of index 3;

(4) U(T, P, 1, n), T a G-monoid of order 2|G|, G a finite group admitting no
subgroup of index k, (n, k)=(2, 3) or (3, 2).

Proof. Clearly, if S is one of the type (1) and (2), n(S)= {2|S|/3} or {3|S|/4}: if
S is the type (3), it is easy to check that 7(S)={|TUB(T)|} = {2|S|/3}; if S is the type
(4), it is easy to check that n(S)={|.#[G; I, J; P]|}= {3|S|/4{.

Now we prove the essentiality and let S be a finite non-simple semigroup
with a right identity e of order =5, eS # S, by Th.2.1 Tor (e) forms a subgroup of
S and S—Tor(e) a right ideal of S.

Step 1. !Tor(e)|<|S —Tor (e)l. If |Tor(e)l=|S—Tor(e)|, we derive a contra-
diction, dividing the argument into two cases:

Case 1. |Tor(e)l>|S—Tor(e)]. By the assumption Tor(e) = eS # S and
n(S)={|Tor(e)|}, hence eS=Tor(e), and so ef=(ef)*=e for every fe E(S). This
shows E(S)=E(Tor (e)), a contradiction.

Case 2. |Tor(e)]=|S—Tor(e). If there exists a xeS—Tor(e) such that
exeTor (e), then ef=e for the idempotent f of {x). Evidently, S=Tor (e)ufTor (e)
forms an L-semigroup, a contradiction. Therefore (S —Tor(e)) = S—Tor (e), and
so S—Tor (e) forms an ideal of S. It follows that n(S)={1/2|S|+ 1}, and Tor(e) is
a group of order p, p a prime. Hence S is a monoid, a contradiction (the discussing
is the same as case 1 of Th.3.2).

Step 2. |X|=2, X={xeE(S):ex=¢e}.

There exists a xeS—Tor(e) such that exeTor(e). In fact, if &S —Tor(e))
< S—Tor(e), then S—Tor(e) forms an ideal of S and so |Tor(e)=1 since
n(S)={|S|—Tor(e)|} by step 1. Clearly, n(S)={|S|—1} and n(S—Tor(e))=Q or
{1/2|S|}. By the result of [1] and Lemma 4.1 there must exists fe E(S — Tor (e)) such
that |f(S—Tor(e))|=1/2(|S—Tor (e)]). Since f=fe, |e(S—Tor (e))|=|f(S—Tor (e)).
Hence |eS|=|e(S —Tor (e))| + 1 =1/2(IS| + 1), and so eS=S by n(S)={|S|—1}. This
is a 1(\:Iontradlcilon. S—Tor(e b o T ’

ow we let xeS—Tor(e) such that exeTor(e), then ef= i
idempotent of {x). Hence |X|=2. (€) J=e where ['is the

Step 3. |XJ§}3.
Let fe X —{e}. Since S—Tor(e) and S—Tor(e)—Tor(f) form two pro
subsemigroups of S by Th.2.1, we have S —Tor(e)—ToH)j)lgl/mSl, tgatpiesr,
|Tor (e)uTor (f)| = 1/2|S] by n(S)={|S—Tor(e)l}; moreover, by the same reason
| v Tor(x)|=1/2|S| since u Tor(x) and U Tor(x) form two proper
xeX —{e} xe X xeX —{e}
subsemigroups of S, hence |X —{e}|<2, that is, |X|<3.

Step 4. The conclusion holds.

Case 1. |X|=2. Let X = {e,{{}, then it is easy to prove Tor(e)uTor (f) forms
a subsemigroup of S of order greater than 1/2|S| by Th.2.1. Since
n(S)=E|S —Tor(e)|} by stepl and Th.2.1, |S—Tor (e)|=|Tor(e)uTor(f)| and so
n(S)={2|Tor ()|} =2|S|/3. Clearly, S=eSUfS and S—Tor(e)—Tor(f) forms the
minimal ideal of S. When eSnfS # @ ,eS=S—Tor(f) and fS=S—Tor(e) and
S=U(eS, P, 1, 2), hence S must be the type (4); when eSAfS=@ ,S=R(eS, 0)
where 0 is the map of eS onto fS:x —fx, and so S is the type ’(3). ’
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Case 2. |X|=3. Let X={e, f, h}, then n(S)={3|Tor (e)|} ={3|S|/4}: in fact, by
step 1 n(S)={|S—Tor(e)|} and both S—Tor(e)—Tor(f) and U Tor(x) form two

proper subsemigroups of S by Th.2.1 and the assumption, he;eo’é |Tor(e)uTor (f)
=1/2|S| and the statement is true. Clearly, S=eSUfSUhAS and S— U Tor(x) forms

the minimal ideal of S. Furthermore, we can prove further thatxee§=S—Tor(f)
—Tor(h) and eS forms a Tor (e)}-monoid of order 2|Tor (e)|. So far, we have proved
that S=U(eS, P, 1, 3), therefore S must be of the type (4).

4. The Main Results

In the section we will determine the z,-semigroup S with n(S)={r}, r§2|Si/3.

Lemma 4.1. Let S be a finite semigroup of order greater than 5. If n(S)={r},
r=<2|S|/3, then there exist two subsets X, Y of E(S) such that

S= u xS= u Sy and |X], |Y]=3.
xe X yeY
Proof. Step 1. S= U eS= U Se.

L. ec E(S) e E(S)
Let A be a minimal set of generators of S. For each te4 we let
R(t)=t3S' U xS

xeA—{t}

Evidently, R(t) forms a right ideal of S. Since S— {t} can not form a subsemigroup
of S by the condition, t must be contained in R(t)UtR(t). Hence S=R(t)UtR(t);
moreover, t3 € R(t)ntR(t), and so S—R(t) is a proper subset of tR(t). This implies
|R(¢)| > 1/2|S]. Now we derive our argument into two cases:

Case of S=R(t). By the structure of R(t) there exist two elements xeS and
yeS! such that t=xty. From this equation a new one can be obtained: t=x"ty",
any neN, and so te U eS.

Case of S # R(t)fE %st) this time, J(t)=S. If R(t) is an L-semigroup, then
R(t)=R(t)t>R(t) = S$'tS! = J(t) by the results of [1], and so S=R(t)UtR(t)=J(t); if
R(t) is not an L-semigroup, there exists a proper subsemigroup Q of R(t) such that
1/2|R(t)|<|Q| by the characterization of L-semigroup and |Q|<1/2|S| since
n(S)={R()}, and so [KQ, S—R()>I2|Q|+I|S—R(@)|>1/2|R()|+(IS|—IR@))
=|S|—1/2|R(z)| = 2|S|/3, hence S=<Q, S— R(t)); moreover, Q is a subsemigroup of
S and S—R(t)ctR(t) < J(t), so S—Q={Q, S—R(t))—Q < J(t). This shows
[J(@®)=|S—Ql=1/2|S|, and now we prove J(t)=S:

(1) |J(2)] # 1/2|S]. Otherwise, |J(t)]=1/2|S| and J(t)=S—Q. Clearly, TuJ(t)
forms a subsemigroup of S for every subsemigroup T of Q, hence Q must be
a group of order P b a prime and =(S)={1/2|S|+1}. Since Q < R(t) and
IR(t)l € n(S), R(t)= {t* }uQ and so t2S=Qt={t* } by J(t)nQ=. If t? =1q for some
qeQ, then tQ=t(qQ)=(tq)Q=t>Q={t?}, and so tR(t)={t?}. This is a contra-
diction to S—Q < tR(t). If t*> # tq for any element g of Q, then there exist two
distinct elements a, b of Q such that ta=tb since |tQ|§|J(t)—S(t2;|=IQI —1, hence
tQ=t{ab™'}={te}, e is the identity of Q, and so |R(t)| 2 |S —tR(t)| =|S| — 2. This is
also a contradiction.
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(2) 1J(¢)] # r. Otherwise, let xeS—J(t), then S contains the following proper
subsemigroup

We J()VE(Kx)) if {x) forms a group,
T J(OU(x)—{x}) otherwise,

and the order of W is greater than that of J(t). This is a contradiction to the
assumption.
From (1) and (2) we have proved S =J(t). It remains to show te U eS: since
e€ E(S)
S—{t} can not form a subsemigroup, there exist two elements w, zeS such that
t=wz; moreover, there exist two elements x, yeS' such that z=xty by S=J(t),
hence t=wz=w(xty)=(wx)ty and so t is contained in U eS.

ee E(S)
By the arbitrary property of t we have proved S={A)= U eS; similarly,
S— U Se. ee E(S)
ee E(S)

Step 2. The conclusion holds.

Otherwise, by step1 we.can let the most short decomposition of S as the
following

S=Se,u...USe,, n=4,

where ¢; € E(S), i=1, 2,..., n. Clearly, if |Se, U Se,|>1/2|S|, then |Se, U Se, |
and |Se, U Se, U Se;| belong to the set n(S); if |Se;u...uUSe,|>1/2|S],
then both |Se,u...USe,| and |Se;u...USe,| belong to n(S); otherwise,
m=Max {|Se, USe; U ...USe,|, |Sezu...uSe,,|$g3|S|/4 belongs to n(S). These
will derive a contradiction to the assumption n(S)={r}, r<2|S|/3.

Therefore the conclusion holds. -

Theorem 4.1. Let S be a finite semigroup and S # SeUSf for any two elements,
e, fe E(S). Then n(S)={r}, r<2|S|/3 if and only if S=# [G; I, J; P}, |I|=3, |J|=1
and G a finite group.

Proof. It is enough to prove the essentiality. By Lemma 4.1 we can assume
S =SeUSfuSh is the most short decomposition, e, f, he E(S). It is easily proved
|$e|=|Sj]=|Sh|=|S|/3, and Sxy=Sy for any x, y of {e,f, hg, Hence S must be
simple, and so the conclusion holds based on Th.3.1. ‘

Theorem 4.2. Let S be a finite non-simple semigroup without one-side identity,
and there exist two elements, e, f, of E(S) such that S =SeuSf. Then n(S)={r§,
r<|S|—2 if and only if S is one of the following types:

(1) U(T, P, 2, 2), T a G-monoid of order 3|G|;

(2 R(U(T, P, 2, 1), 0), T a G-monoid of order 2|G|;

(3) L(U(T, P, 1, 2), 0), T a G-monoid of order 2|G|;

(4) L(R(T, 0), ¢), T a G-monoid of order 3|G|/2, where G is a finite group
admitting no subgroup of index 3

Proof. If S is one of the type (1)-(4), it is easy to check n(S)={2|S|/3}. Now
we prove the essentiality:

Let X={xeE(S):ex=e}, Y={yeE(S):fy=f}, I the minimal ideal of S,
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P=Se— u Tor(x) and Q=Sf— u Tor(y). By the given conditions it is easy to

xe X yeY
prove that Tor (x) n Sf=Q for any xe X and Tor (y) n Se=Q for any ye Y, and so
each of the following sets

Tor(x)9 TOT()’)a Pr Q’ Se'_Pa Sf_Q
forms a subsemigroup of S by Th.2.1.

Step 1. Sxy=Sy and Syx=Sx for any xeX, yeY.

Clearly, Sx=_Se and Sy=Sf. Now we divide our argument into two cases:

Case of mn(S)n{|Se|, |Sf]}=Q . At this time, |Se|=|Sf|=1/2|S|, and so
SxnSy=@ .Since both SxUSxy and SxuSxyu{y} are the subsemigroups of S,
there must be the equation S=SxuUSxy by the assumption 1:(S)={r%, r=<|8|-2,
and so Sy=Sxy; similarly, Syx=Sx.

Case of n(S)n{|Sel, ISf1} #D. Let |Selen(S), then r=|Se|. Clearly,
S={8x,y)=SxuSxyu{ yzn’ and so S=SxuUSxy since S contains no subsemigroup
of order equal to |S|— 1, hence Sxy=Sy. It remains to prove Syx=_Sx, and it is
enough to show |Sf]=r.

Since S is non-simple and r=|Se|, x must be out of I by the assumption
n(S)={r}, r<|S|—2 and so P at least contains the subset Ix. Clearly, |P|=|Sx|
—|Sx—P|=r—1/2|S|, hence |PuSy|=|P|+|Sy—P|=|P|+|Sy—Sx|=(r—1/2|S])
+(IS|—r)=1/2|S|. If S # {P, Sy, x), then x can not belong to SyxuSyP, and so
Syx < P and {P, Sy) = PuUSy, it follows from the assumption n(S)={r}, r<|S|—2
that r=1/2|S|+ 1; moreover, the subset TUPUSYy also forms a subsemigroup of
S for every subsemigroup T of Sx— P since x does not belong to SyT. Therefore
Sx—P is a group of order p, p a prime since it admits only the subsemigroup of
order equal to 1 or |Sx—P|, and so |S|=|Sx—P|+|SyuP|=p+1/2|S|, hence
|S|=2p. Evidently, |(Sx—P)y|=|Sy—P|<p—1 and so |(Sx—P)y|=1, that is,
Sxy={xy} or P, this is a contradiction to Sxy=Sy. Consequently, S={P, Sy, x,
this implies S=PuSyuSyxu{x?. It follows that S=PuSyuSyx and so x is
contained in SyxuSyK, hence [Sy|=|Sx|, this shows |Sy|=|Sx|=r.

Now we can assume ef=f and fe=e.

Step 2. Pf=Q, Qe=P, (Se—P)f=Sf—Q and (Sf—Q)e=Se—P.

Since Se(Pf)=(SeP)f < Pf, it is easy to prove, by stepl, that Pf< Q;
similarly, Qe € P, and so P=P(fe)=(Pf)e < Qe. Hence P=Qe and Q =Pf.
Furthermore, (Se—P)f=Sf—Q and (Sf—Q)e=Se—P.

Step 3. I=PUQ.

By step2 it is easy to prove that S contains the following subsemigroups
PUQ, PuQuU{e}, PUQU{e, f}, S—PUQ, (S—PUQ)UI,

hence S=(S—PuQ)ul by the condition n(S)={r}, and so I =PuQ.

Step4.|S—I|=r=2|S|/3 and S—I is an L-semigroup without one-side identity.
Clearly, |S—I|=|Seul|=|Sful|=r, hence r=|S—I|=|(Se—SfuI)u_(Sf
—Seul)|=2|Se—Sful|=2(|S|—r) and so r=2|S|/3, |I|=|S|/3. If S—1I contains
a subsemigroup T of order greater than 1/2|S—1I|, then IUT forms a proper
subsemigroup of S of order greater than r, a contradiction. So S—I is an
L-semigroup. By “S without one-side identity” it is easy to show S—1I has no
one-side identity: in fact, if the statement is false, &(S —I)=S—1I and so eS=S§,
a contradiction.
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Step 5. S=eSUAS, where heE(S—I)—'—{e,fil.
By step4 there exists he E(S—I)—{e, f} such that S—I=e(S—I)UhRS—]I).
Since In(eSUhS) # O ,S=eSuUhS. Here we let eh=e and he=h.

Step 6. The conclusion holds.

Tor (e) admits no subgroup of index 3; in fact, if the statement is false, then
S—1I must have a subsemigroup T such that its order equal to |S—1|/3 and so
Tul forms a subsemigroup of order 5|S|/9, a contradiction.

If SenSf# @ and eSNhS # O, then, by the preceding results, we have
I=SenSf=eSnhS and so Tor(e)ul forms a Tor(e}-monoid of order 3|Tor (e)|
since S={(S—1, x)=(§'—_I)u(Tor(e), x) for any element x of I, hence
S=U (Tor(r)ul, P,2,2) is of the type(1); if SenSf=eSNhS=Q@), then S=L(Se, )
where ¢ is the map of Se onto Sf: x — xfand Se= R(eSe, 0) where 0 is the map of
eSe onto hSe:x — hx, hence S=L(R(eSe), 0), ¢) is of the type (4); if SenSf=¢
and eSNhS # ¢, then I =eSnhS and S=1I(Se, ) where 6 is the map of Se onto
Sf :x — sf, moreover, it is clear that n(Se)={|S|/3} and so Se=U (eSe, P, 1, 2) by
Th.3.3, hence S=L(U(eSe, P, 1, 2), 0) is of the type (3); if SenSf#(p and
eSNhS=Q, then S is of the type (2) by the same reason.

This completes the proof. -

Theorem 4.3. Let S be a finite semigroup of order greater than 6. Then
n(S)={r}, r<1/2|S|+1 if and only if S is a Z,-monoid of order 2p or
S=<a, b; a?*1=a, b?*'=b, ab=ba=a), p a prime.

Proof. It is easy to check the direct part. For the converse, S must be
?I‘ trlnggond by Lad.1, Th.4.1, Th.4.2 and Th.3.3 and so the conclusion holds by

Theorem 4.4. Let S be a finite semigroup. Then n(S)={r}, 1/2|S|+2<
<2|S|/3—1 if and only if S is a G-monoid of order n, where 3n+ %2}§ 6|/G||S'4n —_6':
and G is a finite group admitting only the proper subgroup of order =|G|—1/2n or
equal to 2|G|—n.

Proof. (as the proof of Th.4.3).

Theorem 4.5. Let S be a finite non-simple semigroup of order # 6. Then
n(S)={2IS|/3} if and only if S contains an L-semigroup L of order 2|S|/3 as its
maxiaml subsemigroup, and L admits no subsemigroup of order |L|/3.

. Proof. It is easy to verify that the condition is essential by La 4. .3.
Th.3.3, Th.4.1 and Th.4.2. - . y it

Now we prove the direct part:

Assume |S|=7 and e€E(L). If the condition holds, it is easy to prove that
S—L forms properly the minimal ideal of S. For any element x of S —L,
eSe=(Tor(e), exe) since S=(L, exe) by the condition, hence eSe is
a Tor (e)-monoid. Now consider the prol;:er subsemigroup T of order r, ren(S): if
T=L, then r=2|S|/3; if T # L, by the choice of T and the given condition TAL
forms a subsemigroup of S of order |S|/3, and we can prove further that
E(T—-L)=ES—L) by the inequality on indices (Th.1.5.5, [11]) and the
structure of G-monoid, hence T—L=S—L by r21/2|S|+1, consequently
r=|TnL+|S—L|=2|S|/3. This shows n(S)={2|S|/3}. ’

At the final, we conclude with an example for Theorem 4.4:

Example 4.1. Suppose G={(a; a7°=¢i) and A is the rectangular band
IxJ,-), I=J={1,2,...,7}. Let S=GUA and on the set S define an o;g)eration by
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the rule that a*(i, j)=(0(k, i), j) and (i, j)a*=(, Ok, j)) for every iel, jeJ,
k=1, 2,..., 77, and keeping products as they are otherwise, where 6(k, n) is the
minimal nonnegative remanent number of k+n for the module 7. Then S forms
a semigroup of order 126 and n(S)={|G|}={77} ={11|S|/18}.
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