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. Two variants of complex uniform convexity are considered and some problems posed in [2] are
solved.

Introduction

The quasi-normed spaces whose quasi-norm is pluri-subharmonic (PL-
convex spaces) were introduced by W.J.Davis, D. J. H. Garling
and N. Tomczak-Jaegermann [2] and by A. V. Aleksandrov [1] (under
the name locally holomorphic spaces). The isomorphic version of PL-convexity
was considered by J. Peetre [11]. The notion of uniform PL-convexity was
introduced in [2]: The quasi-norm of a uniformly PL-convex space is “uniformly
pluri-subharmonic”. It is known that some classical spaces, e.g. L?, 0 <p < o0, are
uniformly PL-convex [2, 8, 10].

In Banach spaces, the notion of uniform PL-convexity coincides with the
notion of uniform c-convexity (see [3]); the latter was introduced in [5], for Banach
spaces, and in [2, 8], for general quasi-normed spaces.

In this paper we consider the connection between these two convexities. The
main results are solutions of some problems gosed in [2].

In Section 1 we give the definitions of the moduli of PL-convexlty and
c-convexity.

In Section 2 we present a partial solution to Problem 3 of [2] by proving that
the moduli of PL-convexity and c-convexity of a Banach space are equivalent.
The proof provides a new characterization of strictly c-convex Banach spaces.

In the rest we solve Problems 1 and 2 of [2] by proving that, in PL-convex
spaces, the notions of uniform PL-convexity and c-convexity coincide, but that
there exists a uniformly c-convex space which is not PL-convex.

1. Definitions and notation

Throughout the paper all vector spaces are assumed complex. A
quasi-normed space is a vector space E with a quasi-norm x — || x| satisfying:
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@) ' [|x]|>0 if x # O, ‘
(i) lAx[|=]Al |Ix|| for all scalars 4 and all x€E,
(iii) Ix+yl =K(lIxll +lyl), x, yeE,

for some K < oo independent of x, y. The smallest K for which (iii) holds is called
the quasi-norm constant of E. :

If a functional |- || on E satisfies (ii) and (i), then (iii) is equivalent to the
requirement that the setgl{x :|Ix|| <€}, >0, form a base of neighborhoods of 0 for
a vector topology on E. Throughout the paper E is assumed to be a quasi-normed
space whose. quasi-norm is continuous with respect to this topology. .

Various notions-concerning the complex convexity can be described by using
the following functionals defined on E X E: <

ME (x, y)=sup {lx+e"y|l : 0<t<2a},
1 2= ’
M3 (x, y)=(EI Ix+e“yll ?de)'’?, 0<p<co.
V]

Each of the ME is a quasi-norm on E x E that is equivalent to the usual ones.
For example,- it follows from the inequality

xS (K/2)x + eyl + I x—e'yl)
that '

(1/K)max {||x|l, IyI}<MT(x, »=K(lx]+lyl)-

Definition 1. A quasi-normed space E is said to be PL-convex (resp.
c-convex) if M5 (x, y)=|x| for all x, yeE (resp. ME (x, y)=|x|| for all x,yeE).
" ldln turns out (see [1, 2]) that E is PL-convex if and-only if one of the following

olds:

1. The function x}»log ||x|| is pluri-subharmonic;

2. There exists p, 0<p< o, such that ME(x, y)=ilx| for all x, y (i.e. the
function xp> ||x|| ? is pluri-subharmonic); -

3. ME(x, y)2|x|| for all x, yeE and all p, 0<p<oo;

4. max {|| f(A)|| :|A|=1} = f(0)|| whenever f(4) is an E-valued function that is
analytic for |4]<1 and continuous for |A|<1.

It is clear that a PL-convex space is c-convex, but there are c-convex spaces
that are not PL-convex. See Section4.

Let 0<p=<o0, |Ix||=1 and £¢=0. We define

HE(x; e)=inf {ME(x, y): y€E, |yl=¢}—1.
The following moduli were introduced in [2]:
Hi(@)=inf{H}(x, ¢): x€E, |x|=1}
=inf {MJ(x, y): IxI=1, Iyl =e}-1.

Definition 2. A quasi-normed space E is said to be uniformly PL-convex
(resp. uniformly c-convex) if H(e)>0 for all ¢>0(resp. HE (¢)=0 for all £>0).

Here the modulus H} can be replaced by any other H, p < co, because of the
following result [2], Theorem 2.4. .
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Theorem A. Let E be PL-convex and 0 <p < c0. Then there exists a constant
¢>0 such that

ME(x, cy) M5 (x, Y)SMTi(x, y/c), x, yeE.
Two real functions f, g defined on an interval (0, a), a>0, are said to be
equivalent (f 0 g) if there is a constant ¢ >0 such that cf(ce) <g(e) and cg(ce) < f(e)

for 0<g<a. It follows from Theorem A that in PL-convex spaces all the moduli
H,, p<oo, are mutually equivalent.

2. On the complex convexity of Banach spaces

It is very likely that HY o HE for every PL-convex space E of dimension =2
(see [2], Problem 3). The author was able to prove this only for Banach spaces.
Theorem 1. If E is a normed space, dim E=2, then
HE(e)=cHE (ce), 0<e<],

where c is an absolute positive constant.

Theorem 1 will be deduced from a result concerning the geometric mean of
the function A — ||x+ Ay|| over the circle |A]=1. To state this result we use the
notion of a semi-inner-product introduced by G. Lumer [7]. A semi-inner-
product on E is a functional [-, -] satisfying:

(@) [x, y1=1xll 2
(i) I1x, ylI=lxllyll,
(iii) [ex+ By, z]=a[x, z]+ By, 2]

for all x, y, ze E and all scalars a, B. It follows that for each z€ E the functional
x> [x,z] is linear with norm equal to ||z].
For x, yeE let

. 1 2x
Mg (x, y)=exp(5_ [ log l|x+e"yll dt).
(V]

Lemma 1. If x, yeE, |x|=1 and |yl <1, then
M§(x, )2 M (x, 2)'7,
where z=(y—[y, x]x)/3.
Proof. For fixed x, y with |x||=1, |lyll<1 let
x+ Ay '
u(d)=log | 552 Il A=,

where a=[y, x]. Since ||x+ Ay|| =|[x+ Ay, x]|=|1+ Aa, by the properties of [, -],
the function u is nonnegative. Also, u is subharmonic and

- 1 2=
log M§(x, y)= > I u(e*\dr
V]
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because

2x

f log|1+ae®|dt=0.

0
(Observe that 1+ad 0 for [A|<1 because |o|<1.) Hence,

‘ 1—
log M5 (x, )2 1—

+rsup {u(d) :|AI=r}, O<r<]1.

(This follows immediately from the inequality u < P[u), where P[u] is the Poisson
integral of the restriction of u to the unit circle. See [6].) Taking r=1/2 and
observing that
‘ x+4y " A
1+ "1+’

and that
A
T4’ A1=1/2} = {4: AI=1/3},
we obtain the desired result.
Proof of Theorem 1. Let|x||=1, |ly| =e<1. Then, by Lemma,
Mi(x, y)ZMG(x, Y)ZME (x, 2)'
where z=y—ax, a=[y, x]. If |¢|<e/2, then |z||=¢/2, whence
Mi(x, 2)Z(1+Hg (¢/2)'3
=1+cHE (¢/2) (c=const>0),
and this implies the required result. Let |x|=¢/2. Then

12 .
M (x, y)g—nf 11 +ae®|de
o
=1+clo)2=1+c(e/2)>

As observed in [2], p.121, HE (a)_S_Hﬁ»(\/Es), where H is a Hilbert space,
dim H=dim E=2, and hence _

M%(x, y)=1+cHE (ce) (c=const>0).

(Note that HE (e)=(1+¢?)'2—1. See [2]) This completes the proof.
As another application of Lemmal we prove a new characterization of
strictly c-convex Banach spaces. A Banach space E is said to be strictly c-convex if

sup { Ix+4yl|l : |Al=1}>||x|
whenever x, yeE and y # 0. See [12]. .
Theorem 2. A Banach space E is strictly c-convex if and only if
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2%

1 ]
3 | log |lx + e"y|| dt > log || x|
o

whenever x and y are linearly independent elements of E.

Proof. Let E be strictly c-convex and let x, y be linearly independent. Let
x'=x/l|x|| and y'=y/lIx|l. If |yl <lx]l, then, by Lemmal,

MG (x, y)=IlxlI M§(x', Y)ZlIxIl M5 (X', 2)'7,

where z=(y'—[y’, x']x’)/3 # 0. Hence ME (x’, z)>1 and therefore M§(x, y)> || x||.
If [yl 2 llx]l, then

MG (x, y)=Mg(y, x)>lylzlx].

This proves the “only if” part.
The “if” part is a consequence of the inequalites M >=M§ and
ME (x, y)> |Ix|l, where x, y are linearly dependent, y # 0. '

3. PL-convexity and c-convexity in quasi-normed spaces

S.J. Dilworth [3] proved that a Banach space is uniformly PL-convex if
and only if it is uniformly c-convex. The following theorem generalizes his result
and solves Problem 2 of [2]. :

Theorem 3. If E is a PL-convex space, then
Hf(e)2 c(HE, (ce))?, 0<e<],

where ¢ is an absolute positive constant. In particular, a PL-convex space ‘is
uniformly PL-convex if and only if it is uniformly c-convex.
Proof. Let |x||=1 and ||y =e<1. By Theorem A, it suffices to prove that

(1 L:=M5(x, y)Z1+c(H5 (ce)),

where ¢ is an absolute constant.

Let L<1+(1/2)HE (¢/2). (Otherwise, (1) is trivial) Since the function
AP |lx+Ay| is continuous, positive and subharmonic, there exists a function f(4)
that is analytic for |4 <1 and continuous for |A|<1, and satisfying

If () =llx+e"yll, 0=t =2m,
SN2 lIx+4yl, A1=1.

(See [4].) Hence
2

o1=L f (@) —fO)2dt +]£(©O)—1

/(1
2x
2 5§ 11E@)~fO)dr,
o

and hence, by the well-known properties of the mean -values of analytic
functions [4],
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(L? =12 zcmax|f()—fO) (r=1/2)
W=r
2 cmax ([f(A) -1/ O)).

Al =r
On the other hand,

max |f(A)| = max ||x+Ay|| =1+ HE (¢/2)
1A|=r Al=r
and

IfOI=L=1+(1/2)HZ, (¢/2).
Combining these inequalities we obtain
(L*—1)'?z cH5, (¢/2),

which implies (1) and completes the proof of Theorem 3.

Remark. It is possible to consider some local properties of the space. Let
Ixll=1 and 0<p=< co. One can define the uniform H,-convexity at x (resp. strict
H,-convexity at x) by the requirement that Hj (x;£)>0 (resp. M5 (x, y)>1 for
y # 0). The proof of Theorem 3 shows that in PL-convex spaces, these notions are
independent of p.

4. Examples

1. L? spaces. It is easily checked that HS (e)=¢ and
2x

H‘,?(;;):{zi [ 11 +eet|?de}?—1, 0<p= oo,
T o

where C is the field of complex numbers. If H is a Hilbert space, dim H>2, then
HY ()= HY (e)=(1+¢%)'?>—1 for p=2, and HY = HS for p <2 (see [2], Section 3). It
foflows from [10] that

HS(e)=(1+pe?/2)'*—1, £>0, 0<p<2,

and this is a solution to Problem 4 of [2].
The moduli of infinite-dimensional LP-spaces are calculated in [8,10] (see also
9): If 0<p<2, then

HY =HY =HS and HL® =HS (g<p).

2. Two-dimensional lattices. Every quasi-normed lattice E with
dim E=2 is c-convex because of the inequality

2 ME (x, »)ZNI(x1*+Iy1»)2 .
To prove this we (for given x=(x,, x,), y=(y;, ¥,)) choose a i, |4,|=1, so that
: |x|i)-oy||=(|x1|2+|)’1|2)”2-
Then (2) follows from the inequality
max {|x; —2o¥; | Xz —Aoy2 [} Z (%2 1> +1y2 1)
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If, in addition, E is 2-concave, i.e. if
(%1% 4 1 Y2 1 Z )2+ 1yl )2,
then, as follows from (2),
3 HE (2(1+€%)'2 1.

3. A uniformly c-convex space which is not PL-convex. Let E be
the space C x C endowed with the quasi-norm

Ixll =min {llx]l, lIxIl,},
where
Gy, x5l 1=(|x1|2+3|x2|2)1/2,
(g, XD 2=1(xz x4 X=(x4, x)eCxC.

It is easily checked that E is 2-concave and its modulus of c-convexity satisfies (3).
To prove that E is not PL-convex let x=(1/2, 1/2) and y=(¢/2, —¢/2). Then
Ixll=1, llyll=¢ and

(M2(x, y))>=1+¢&2—2¢/n<1 for 0<e<2/m.
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