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Approximation by Positive Operators
on Infinite Intervals
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An operator based on Gamma operator, introduced earlier by A.Lupas and M. Miller, is
defined and some basic results concerning this operator are obtained.

1. Introduction

+1

Let g,(x, u)=

= e *y" x>0, then the operator G,(f; x) defined

Gulf 9= ] 0,65, ()

is called Gamma operator which was introduced by A. Lupas and M. Muller
[1]. We define an operator F,(f, x) as

Fi(fs %)= ng,(x, ) duzg.-l(u, 0f(0)dt

2n) xrtiget
n':n'-l—)l)! (x+t)2n+1f(t)dt, n>1, x>0

_ @ 2wt
" n! (n—1) {(1 +w)2n+ 1f(Wx)dw

for any f for which the last integral is convergent.
From the relation

I'e+1)

ua+1 *

[e™tdt=
)

we easily find that

* Presently on sabbatical leave from Kuwait University, P.Box 5969, 13060-Safat-KUWAIT



100 S. M. Mazhar

F,(1, x)=1 (and so ||F,|=1).
F,(t, x) = x,

Fu(tzr X)= “"'—n+1x2, n>1
n—1
so that

2x2

Fu((t_x)za X)= n+1

We write
A; (s X)=f(x+h)=2f(x)+f(x—h),

w,(f, 9)= SUP AL (f, %)l
0shss

x+hze(0, )

and denote by C(0, o0) the class of bounded and continuous functions in (0, o).
In this note we propose to study some of the basic results concerning the
operator F,.

2. Degree of approximation

To obtain a result on the degrée of approximation we need the following
lemma which is a particular case ¢(x)=x of Theorem1 in [2].

Lemma 2.1. Let {L,} be a sequence of positive linear operators mapging
C(0, 0) into C(0, ) such that L ,(1,x) = 1, L (t, x) = x and L ((t — x)?, x) < Kx?a?2,
where a, —»0 and n — oo, then for fe C(0, o) -

L, D—fNSKw, (£, —=).
. ‘/n

1
Using the above lemma with a, = — we have
n

Theorem 2.2. If fe C(0, o), then

IF.(fs %)~ S Kwy(f; —=).
Jn

3. Uniform approximation

We now proceed to characterize those functions f which can be approximated
uniformly by F,(f, x). It is easy to see that
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§ gns1(x, v)du | go—, (u, t)dt
0 (]

@ =1ym+2  [(2n+42)

= Tt e

C TR R
_F(—n-i-Z—)]"(n)z‘,t' =g tde=1
and,
9= sotn Wdu] oy Df0 U
T2 Gt W= g s, w)du j G-, DL,
(4]
Hence,
IFa G s T ?(g,(x W)+ gns 1%, u»du;g.-,(u, Ol 71 de
2Dy,

Using Theorem2 in [2] with (p(x)=x, we obtain the following result on
uniform approximation.

Theorem 3.1. For fe C(0, oc) the following statements are equivalent:

(@) F(f)—f=0(1) uniformly in (0, co),

(ii) lim f(x + hx)—f(x)=0 uniformly in (0, ),
h—0

(iii) f(€¥) is uniformly continuous in (— oo, oo).

4. A global saturation result
In this section we examine the global saturation problem for our operator

: 1
F.(f, x). Using Proposition 1 in [2] with ¢(x)=x and a, = \/—_, we have
n

Theorem 4.1. {F,} is globally saturated on (0, o) with order {-'l;} and has the

saturation class {f/f" is locally absolutely continuous and x*f"(x)S K}.

Proof. To prove our theorem we have only to verify, in view of Proposition
1 in [2] that

Filhe.es 9=0s.(>),
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where
(t x) 't—xlge’
he, o ()= { lt—x|<e.
Writing
_ (2 xttign—t
Gu(x, t)— n!(n—l)! (x+t 2n+1°?
we have
Fyhee; )=( | + [ )Gux, tXt—x)*dt
o x+e
=I,+1,, say.
Now
(2")! L xn+1tn+1
Izén!(n—l)!x+!(x+t)2"+ldt
® ytldy €
<K 2?" _—  p=-—
sK2" [ v 17 %
(1+n) u?
2n n—-2
2w L e
4+4n 1
O((4+4’1+r,2) ) Xy 3('_‘)'
Also
(zn)! x—eyntlm—1,2
Lo ) Grpmer &
1-n u"1
=K2" | (l—mmd“
4— 4r]

<K 2n n—1 _ n—1
1
—0,,_,(;).
This proves Theorem4.1.

5. Lipschitz class

Finally we prove the following theorem:

Theorem 5.1. Let 0<a<1 and fe C(0; o0). Then the following statements are
equivalent :
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(a) F (])——f—O(n *) uniformly in (0, o0),
(b) w(f, 9)=0(5%),
(© f(e)eLip,2a,

where Lip,f={geC(0, )/A%(g, x)<Kh?, h>0}.

Proof. To prove that (a) «<— (b), in view of the Corollary in ([2], page 167) it
is enough to prove that

(5.1) Ix2F 2(f, x)I<Kn| f|l, fe C(0, o)
and
(5.2 IX2F 2(f, N=Kl*f" I+ 111,

where ¢(x)=x, fe C(0, o) and f’ is locally absolutely continuous.
Now it is easy to see that

., ©  (2n)! X1t
szn(f; x)= gm” (x l)( +t)2"+1f(t)dt
where
H(x, )=n(n+1)—2(n+1)2n+ 1);%
2
+(2n+l)(2n+2)( e
4 4
—omnt(1- 4 )
_ 2(1_ 2x .\,
=0+ (1=
Since
© g _(a—1)b!
g(x+t)°+"+1 t="azpy’ & b
we get
© Qn) x"tiee! 2x
WA NS Kl +1 ] e e (120 d
B @ ). mn=1)  4n+1)!@—1)!
=l ll{o(")+n!(n—l)'nz( @n)! @n+1)!
dn+2)!(n—-1,
sy ) = Wlom.
Also
F _w ! - Xxu n T ull —uttn—l
s x)-—£ e dug(n_l)!e 1f()de
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1 o S -
I A AT

1 o b Xz, ,2
”, = -y —z a=1en(7\(7\2
so Fi(f, x) —n!(n_l)!g)"'e dy(j;e S S [
Thus
1 4 ® Xz Xz
X*F(f, X)=——— [ y"e"dy [ e *z" "} (=)¥"(=)dz

eI =K+ 1£1).

This verifies (5.1) and (5.2). The proof of the equivalence of (b) and (c) is omitted as
it is already contained in [2].
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