Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Mathematica
Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences — National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic
reprints.
Other uses, including reproduction and distribution, or selling or licensing copies, or
posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg




Mathemailica
Balkanica

New Series Vol. 5, 1991, Fasc. 2

Rigorous Sensitivity Analysis for Real Symmetric Matrices
with Uncertain Data

Christian Jansson

Presented by Bl. Sendov

At present, interval methods for the solution of linear algebraic systems with interval input data
assume that all input data very independently between their given lower and upper bounds. Solving
with those methods linear symmetric systems a severe overestimation may occur. In this paper we
yntrodlécc a new method calculating very sharp bounds for linear symmetric systems with uncertain
input data.

1. Introduction

We consider the numerical solution of a system of linear algebraic equations
ay - Ax=b,

where A is a symmetric real nx n-matrix and b is a real column vector with n
components. Such systems arise in many practical applications in physics and
engineering. Moreover, in most applications the coefficients of A, b are uncertain
due to measurements.

Interval arithmetic (cf.[1], [2], [14], [15], [18]) provides a useful tool for solving
linear systems the coefficients of which are uncertain. In interval arithmetic the
real input data are replaced by real compact intervals

(1.2) [a] :=[a, a] :={acR|a=<a=a},

where a<a. It is assumed that the reader is familiar with the basic results of this
theory. We will use the following notations. R, R", Rrx» are the sets of real
numbers, real column vectors with n components and real nxn matrices. II R
denotes the set of all real compact intervals. II R" is the set of all real interval
vectors

(1.3) [x] :=[x, x] :={xeR"|x=<x=<X}, x=X

with n real interval components [x;]=[x;, X;], i=1,..., n. Il Rnxn is the set of all
real interval matrices

(1.4) [A]:=[4, A] :={AeRwn|ASA<A}, A<A

with n? real interval coefficients [a;;] =[Z‘ p8ubbi=1,....,n (= is to be understand
componentwise). We will use * € {+ { as well for the real arithmetic
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operations as for the interval operations in II R, I R", II R"x»; from the context it
will be always clear whether it is an operation on reals or on intervals. For a set
X < R" the i-th component is marked by

(1.5) X, :={x;eR|x=(x)e X}.
For any interval [a]=[a, a] the diameter of [d] is
(1.6) d(a) :=a—a
and the midpoint of [4] is
(1.7) m([a]) :=a+0.5-d([a]).
For interval vectors and interval matrices diameter and midpoint are defined
componentwise.
For an interval vector [x]eIIR"
(1.8) - int([x]) :=[xeR"|x<x <X}

denotes the interior of [x]. .
A linear interval system is a family of linear systems

(1.9 Ax=b, A€[A]ell R»x» and be[b]ell R".

We denote a solution of this family by x=x(4, b) :=A"'b to indicate the
dependency on the input data A, b. The corresponding solution set is
defined by

(1.10) X :={x(4, b)eR"| Ae[A], be[b]}

Several methods (cf. [4], [5], [11], [16], [17], [18]) for computing outer bounds
[x]=([x;, x;]) of the solution set are known. That means these methods compute
outer bounds for each component of Z, i.e. .

(1.11) x;<infZ,;Ssup X, <x, for i=1,..., n.

Depending on the method the outer bounds may overestimate some or all
components Z, of the solution set. Recently, S. M. Rum p [20] has developed a
method for calculating additionally inner bounds [y]=([y,, y,]) with

(1.12) infX,<y,<y,SsupZX, i=1,..., n.

These inner bounds allow to determine the degree of sharpness of the calculated
outer bounds. Moreover, a guaranteed sensitivity analysis for a linear system with
interval input data is given.

For the above methods it is always assumed that the input data vary
independently. In the case of symmetric matrices with uncertain data,
dependencies occur and it is of interest to calculate inner and outer bounds of the
corresponding solution set

(1.13) ™ :={x(A, b)| A€[A], be[b], A symmetric}.

Obviously ™ < ¥ but %" may be small compared to the latter. At present,
methods for calculating outer or inner bounds of Z™ are not known (compare
[15], Chapter 3).
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In Section 2 we present a method calculating very sharp inner and outer bounds
for the solution set £*™. In Section 3 an algorithm with some remarks about the
convergence and some details of implementation on digital computers is
described. Section 4 contains some numerical experiments.

2. Basic Theorem

In the following we always assume that [4]eII R**" with [a,,]=]a,,] for
v,u=1,..., n, [b]JeII R", R is a real n x n-matrix with row vectors r' for i=1,...,n
and X eR".

In applications usually R is a calculated approximative inverse of the midpoint of
[A] and X is an approximative solution of the midpoint system m([A])x =m([b]).
If Ae[A], be[b], [w]ell R* and

(2.1) R(b— AX)+(I — RA) -[w] < int [w]

then from a Theorem of S. M. Rump ([18], page 59) it follows that R, 4 are
nonsingular and

22) X(4, b) := A~ 'beZ+R(b— A%)+(I— RA) -[w].
Hence, (1.13) yields
(2.3) ¥ < U {X+R(b—AX)+(I—RA) -[w]| A€[A], be[b], A symmetric}

if (2.1) is fulfilled for all Ae[A], be[b], A symmetric. To obtain very sharp bounds
for the solution set Z¥™ we have to examine carefully the right hand side of (2.3). If
the diameter of [A] is of moderate size then the quantities

I—RA, [w] and R(b— AX)
are of small order of the magnitude for all Ae[A], be[b]. Because the set

(24) U {(I—RA)[w]| A€[4], A symmetric}
is the product of two small quantities this set is in general small compared to
(2.5) Q :={R-(b—AX) | Ae[A], be[b], A symmetric}.

The first set is obviously contained in (I — R[4])-[w]. In the following we construct
sharp bounds for every component of Q.
The i-th component of R(b— AX) satisfies

rb—A%)= X r,b

n=1

n n
" z rin( z anviv)
u=1 v=1

n n
= X ry(b, —a,%,)— ,.,El Fiu@uy X .
n=1

The symmetry a,, =a,, yields me

- (26) ripb—AR= T riub,—a, % ,)— . z l(r,,,i,+r,.i,,)a,,,.
. u=1 Ve
u<v
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By defining

@D = I rul-lulE)— E uE, g an]
u=1 *

. u<v
for i=1,..., n from a Theorem of R. E. Moore ([14], page 23) it follows that
(2.8) Q;=[z] for i=1,..., n,

where Q, :={ri(b— A%) | A€[A), be[b], A symmetric) is the i-th component of Q.
This is because in (2.7) each interval variable occurs only once and to the first
power.
Now, by defining

29) [x]1=Ix;, X;]1:=%;+[z;,]1+(ei —rF[A])-[w] for i=1,..., n

(e; denotes the i-th canonical unit vector) from (2.3), (2.8) and from elementary
properties of the interval operations it follows that

(2.10) x; Sinf(ZP™)<sup (Z?™) =X, for i=1,..., n.

To be perfectly clear, we mention that because of (2.8) exact bounds for Q are
calculated. Therefore the outer bounds (2.10) are very sharp for moderate
problems where d((I—R[A]-[w]) is small compared to d(Q).

Now, we assume the existence of an interval vector [w]leII R" such that

(2.11) [z]+{ — R[A]) [w] < int [w].

Then (2.1) is satisfied for all symmetric A€[A], be[b] and by (2.9) outer bounds [x]
of the solution set %™ are given. In the following, we show how to calculate the
inner bounds.

Obviously, for all Ae€[A], be[b] then equation

(212) © A" 'b=%+R(b—A%)+(I—RA) (A" 'b—3%)
holds. Looking at the i-th component of (2.12) it follows that
(2.13) I =x,+V;

with
V,:=(r'(b— AR)+ (", —r*'AXA~'b—X) | Ae[A], be[b], A symmetric}
for i=1,..., n. By defining
(2.14) [A] :=(I —R[A))-([x]—%)
using X¥™ < [x] yields
{(e: —riA)- (A~ 'b—5) | Ae[A), be[b], A symmetric} < [A;]
for i=1,..., n and with (2.5), (2.8), (2.13) it follows that

(2.15a) inf(V,)<inf([z;]) +sup (A;D=z+A,,
(2.15b) sup(V;)=sup([z;]) +inf([A;D) =2+ A,.
Therefore '

(2.16) inf(ZP™)Syi=y.Ssup(ZP™),
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where [yl=([y;, y;]) is defined for i=1,..., n by

(2.17a) Vii=%;+z;+4A,

(2.17b) : Vir=%+Z;+A;.
With same arguments as before the inner bounds [y] are very sharp for moderate
problems. Even for system where the diameter of [z] is smaller than the diameter
of A for some components, very sharp inner bounds may be computed for the

remaining components of the solution set ™.
We summarize the obtained results in the following theorem:

Theorem: Let [Alell R**" with [a,,]=[a,,] for v, u=1,..., n and [b]eII R",
ReR™ ", xeR". Let

= T ruBl-(aulE)— Z 00k, 470, e

n=1
u<v

for i=1,..., n and let [w]ell R" with
[z2]+ (I —R[A4)]) - [w] < int ([w]).
Then
a) [z;,]={r'(b— AX) | A€[A], be[b]l, A symmetric) for i=1,..., n
b) By defining
[x,]=%,;+[z]+ (e —r[A)-[w] for i=1,..., n
the inequalities
, x; Sinf(ZP™)<sup(Zy™)=<x, for i=1,..., n
are valid.
c) By defining
[A;] :=(e} —r[A))-([x]— %) for i=1,..., n
yii=%,+z,—A, for i=1,..., n
yii=X,+z,+A,, for i=1,..., n
the inequalities
inf(ZP™)<y; =y, Ssup(ZP™)

are valid for all i with y;<7y;.

3. The Algorithm

The parts a) and b) of the theorem of section 2 show how the outer bounds
[x] are calculated and that the solution set Z%™ is very well described by these
bounds if the diameter of (I — R[A])[w] is small compared to the diameter of [z].
The main problem is then to find an appropriate interval vector [w]ellR"
satisfying condition (2.11). To get [w] we apply an iteration scheme which was
first introduced by S. M. Rump (cf. [18], page 62) and we modify it for the
symmetric case:
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(1) Calculate with some standard algorithm an approximation R of m({4] and an
approximation X of the solution of the midpoint system m([A])x=m([b]).
(2) Calculate [z] by (2.7); [v] :=][z]; k :=0;

repeat W] :=[v]-[1—e 1+e]+[—n ul;
k:=k+1;
[v] :=[z]+(I—R-[A4])-[w];
until [v]l =int([w]) or k>k_,,.

(3) if [v] < int([w]) then
~a) By [x;]:=X%,+[v;]), i=1,..., n outer bounds of the solution set =™ are
given.
b) Calculate y;, y;, i=1,..., n by (2.17a, b).
If y;<y; then

inf (E9™) <y, <7, <sup(EP™).

A proper value of ¢ is 0.1 and u is usually a vector the coefficients of which are
equal to m-pu,, where m is a small integer and p, is the smallest positive
floating-point number. The maximal number of iterations k_, can be specified by
the user. In general only one or two iterations in step (2) are necessary such that
ko= 10 is sufficient.

Now, the main question is the convergence of this method, i.e. under which
assumptions an interval vector [w]elIR" is computed such that [v] < int[w].
Recently, S. M. Rump ([21]) has proved the following Theorem:

Theorem: Let [Clell R**", [z], [v]° €Il R". Then the following two conditions
are equivalent :
(1) Using for 0<eeR, O0<ueR" the iteration

(3.1 W] :=[v]*-[1—¢, 1+e]+[—n Hl,
(3.2 [1**! :=[z]+[C]- [v]*

there exists a keN with [v]**! < int ([w]).

(i) p(l[C])<1.

Remark : For [ClelI R" the absolute value |[C]| is defined as the real
n x n-matrix the coefficients of which are equal to max {|c;| |c;€[cy;]} and p
denotes the spectral radius of |[C]]|. . »

By step (2) if follows that the algorithm converges in a finite number of steps
if the spectral radius p(|(I—R[A4])])<]1.

For a practical implementation of the algorithm some remarks are given. The
operations in step(1) are the ordinary floating-point operations. According to
formulae (2.9), (2.10), we have to calculate on a computer floating-point bounds
[%,]1=[%,, X ;] containing [x,]=([x;, X;]) for i=1,..., n. Obviously, using the
ordinary floating-point interval operations in (2.9) will yield such validated
bounds.

The computation of the inner bounds must be implemented carefully.
According to (2.15a, b), (2.16), (2.17a, b) we have to calculate on a coml[lmter upper
bounds of inf([z;]) =z, and upper bounds of sup ([A;]) for i=1,..., n. The latter are
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calculated by using ordinary floating-point interval operations. Using systemati-
cally the monotone roundings available on a computer, it is possible to get upper
bounds of z;. Analogously lower bounds of z; and A, are obtained.

Better results can be achieved by using U. W. K ulisch’s arithmetic [12] for
vector and matrix operations if the diameter of the interval input data are small.

4. Computational Results

In the following we list some numerical results for the algorithm described in
the previous section. The algorithm described in section 3 is implemented by the
programming language CALCULUS [19]. CALCULUS is an interactive pro-
gramming environment supporting Kulisch’s arithmetic, LINPACK, EISPACK
and the algorithms of the ACRITH subroutine library 19], [10]. We use
CALCULUS on a IBM 4361 (base 16, machine unit eps=16"'3=0.22... 107 '6),

In our first example we consider the real symmetric matrix

—758.0284 8971284 —507.7297 —260.2576

8971284 —507.7118 7.705539 508.9875
—507.7297 7.705539 —5.192805 —510.2374
—260.2576 508.9875 —510.2374 —259.0101

A=

of dimension4. This matrix is well-conditioned with an [, -condition number
5.33.10°. The right hand side is given by [b]=4-x with exact solution

x=(1, -1, 1, —1)‘

A symmetric interval matrix [A4] is defined by A in the following way:

lai;, ai;] :=[a;;-(1—7), ay;-(147)]
for

G, Hef{,3), (3,1), (2,3), 3,2), (3,4), 4,3)}
and

[gija 5.’;‘] :=[aij, au]

for all other (i, j). We display some results for this symmetric interval system
[A]x=[b] where r=10"". In Table4.1 the inner and outer bounds [x], [y] of the
solution set £%™ calculated by the algorithm of section 3 are displayed. These
results are compared with the outer bounds [u] of the solution set X calculated by
the routine DILIN of ACRITH and the inner bounds [v] calculated by the
algorithm of S. M. Rump [20]. These bounds are displayed in Table4.2.
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Table 4.1 . -
Outer and inner bounds [x], [y] of 2™ for r=10""
[x]
[ 9.99999998436-107!, 1.000000001562-10°]
[— 1.00000020157 - 10°, —9.999997984292-10 1]
[ 9.99999898940-107!, 1.000000101059-10°]
[— 1.00000020259 - 10°, —9.999997974089- 10 1]
Dl
[ 9.999999984787-10"1, 1.000000001521-10°]
[—1.000000201528 - 10°, —9.999997984710-107 1]
[ 9.999998989821-1071, 1.000000101018-10°]
[— 1.000000202549 - 10°, —9.999997974507 - 10" ]
Table 4.2

Outer and inner bounds [u], [v] of £ for r=10""

[]

[ 9.99798545488 - 10'01, 1.00020514545 - 10° ]1
—1.000204944371 - 10°, —9.99795055628-10" "]
{ 9.997950545768 - 18' 1 1.00020494542-10°] :
[—1.000204945406 - 10°, —9.99795054593-107!]
[v]
[ 9.997949470319-1071, 1.000205052967- 10° ]
[—1.000204851979 10‘1,l —9.997951480205 - 10; 1]
[ 9997951469698 10", 1.000204853030-10°]
[—1.000204853013 - 10°, —9.997951469868- 10~ ]

Christian Jansson

Comparing Tables 4.1, 4.2 shows that a drastical overestimation occurs if the
input data of a linear interval system with symmetric system matrix are handled
independently. Moreover, comparing in each case the inner and the outer bounds,
it follows that the solution sets X*™ resp.X are very well described by the
computed outer bound [x] resp. [u]. To be perfectly clear we display in Table 4.3
the ratio of diameters d([x;])/d([u;]), d([x;])/d([y;]) and d([y;])/d([v,]) for i=1,...,4.
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Table 43 | _
Ratio of diameters for r=10""

d([x;])/d([w;)) | d(ly:D/d((x;]) | d(lv;])/d([u;])

7.618-107° 0.9732 0.9995
9.835-10°* 0.9997 0.9995
4931-107¢ 0.9995 0.9995
9.885-107* 0.9997 0.9995

The ratios in the first column show the phenomenon of overestimation
whereas the ratios in the second and third column of Table 4.3 demonstrate the
sharpness of the calculated bounds for the solution sets £*™ and Z. It is rather
surprising, that for a linear system with small dimension and small condition
number for example the diameter of the first component of the solution set "™ is
equal to 7.6-107'.4(X,).

If x is the exact solution of Ax=b, 4 is a perturbation of A and ¥ is the exact
solution AX=b then

llx—%| l4a-A4|
——— =~ cond (4). :
E R e 1]

This is a well-known fact by the theory of Wilkinson. Because of the relative
perturbation r=10"7 and a condition number of about 5.10% it would be
expected that only 3 or 4 figure is correct. But from the results of Table4.1 it
follows that depending on the components of the solution set between 6 and 8
figures are correct.

In Tables4.4, 4.5 the ratio of diameters with r=1071, resp. r=10"13, are given.
As expected the phenomenon of overestimation is decreasing if r is decreasing.
Obviously if r=0 then Z%™ =X, Comparing the diameters of inner and outer
bounds in both cases very sharp bounds of the corresponding solution sets are
calculated.

Table 4.4 . -
Ratio of diameters for r=10"1°

d([x;D/d([w;)) | dly:)/d(x;) | d([v,])/d([w;])

9.734-107° 0.9999 0.9999
9.859-107¢ 0.9999 0.9999
4.954-107* 0.9999 0.9999

9.909-10°* 0.9999 0.9999
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Table 4.5 | 13
Ratio of diameters for r=10

d([x;])/d([w;]) | d(y:))/d((x;]) | d(lv;])/d([w;])

2.252-1073 0.9999 0.9999
3.299-1073 0.9998 0.9999
2.777-1073 0.9999 0.9999
3.163-107° 0.9998 0.9999

The degree of overestimation depends strongly on the solution resp. on the
right hand side of the linear system Ax=b and the corresponding interval input
data. In Table 4.6 the ratio of diameters is listed in the example case where

x=(1,1,1,1)
is the exact solution, [bp]=A-x and
lai;, ai;l=la;(1—r), a;;(1+7)]
for all i, j=1,..., 4 with r=10"1°,

Table 4.6 . . .
Ratio of diameters with r=10

d((x;])/d([u;]) | d(y:])/d(x;]) | d(v;)/d(w;])

0.6018 0.9999 0.9999
0.6023 0.9999 0.9999
0.6018 0.9999 0.9999
0.6024 0.9999 0.9999

In this case inner and outer bounds of the corresponding solution sets are
practically equal whereas according to the first column of Table 4.6 there occurs .
only an overestimation of about 809%.

In the second example we discuss the well-known (symmetric) Hilbert matrix

(H™ij) :=(1em(l,....,2n— D)/ +j+1)

of dimension n=7. The least common multi)ple of all.denominators is denoted bz
lcm. Contrary to the first example H is an ill-conditioned matrix wit
I, -condition number 7.45. 108, The right hand side is given by [b]=H” - x, where

(x=1, —0.5, 0375, —0.312, 0.273, —0.246, 0.226)'
and the corresponding symmetric interval matrix [A] is defined by
(@i, i+1] :=[i+1,:] :=[HTls - (1 =), Hﬂﬂ (1=r), i=1,..., n—1
and [a;;]=HY{)’ for all other coefficients.
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In the following we display in Table 4.7 for some r the minimum value of the
ratio of diameters.

Table 4.7
Minimum value of the ratic of diameters

4 4 4

B
i=1 d([u D i=1 d([x;]) i=1 d([w;])

107° | 5496-10~3 0.8643 0.8929

1071°( 5439-10°3 0.9862 0.9889

107! 5455-10°3 0.9986 0.9988

10712] 5.712-1073 0.9999 0.9999

107131 7.700-1073 0.9999 0.9999

107 14| 2.715-1072 0.9999 0.9999

Likewise, this example demonstrates a severe overestimation if bounds are
calculated for £ and not for the solution set X%™
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