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In the present paper neutral type linear hyperbolic differential equations of the form

az L] s
(1) lx, 9+ Z Aul(x, t—)]—[Au(x, )+ I pf)Au(x, t—p,)]
ot i=1 =1

k
+p(x, thu(x, )+ Z p(x, u(x, t—a;)=0, (x, )eQ x (0, ) =G,
i=1
. .

are considered, where Au(x, )= I u,,/(x, 1) and Q is a bounded domain in R" with a piecewise

smooth boundary. Under certain &onditions sufficient conditions for oscullation of the solutions of the
problems considered are obtained.

1. Introduction

The development of the oscillation theory for linear hyperbolic differential
equations began in 1969 with the paper of K. Kreith [1]. To the further
investigation of the oscillatory properties of the solutions of these classes of
equations the papers of K. Kreith [2]-[4], K. Kreith and G. Pagan [5] etc.
are devoted. Oscillatory properties of the solutions of linear hyperbolic equations
with a deviating argument are studied in the paper of D. Georgion and K.
Kreith [6].

In the present paper sufficient conditions for oscillation of the solutions of
neutral type linear hyperbolic differential equations of the form

jil w®Au(x, t—p,)]

2 m
1) %[u(x, 0+ '2 Ai(Ou(x, t—1)]—[Au(x, )+

i=1 i

+p(x, tu(x, t)+ )’:“. pi(x, u(x, t—o;)=0, (x, )eQ x (0, ) = G,

i=1
are obtained, where Q is a bounded domain in R" with a piecewise smooth
n

boundary, Au= X Uy x;» Tio P 0;=const>0.
i=1
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Consider boundary conditions of the form
d
@ =305, Yu=0, (x, e [0, o),
(3) u=0, (x, t)edQ+[0, ).
We shall say that conditions (H) are met if the following conditions hold:
H1. A(t)e C*([0, o0); [0, o0)), i=1, 2,.
H2. u{t)e C([0, o); [0, o0)), i=1, 2,.. . s

H3. p(x, 1), p;(x,t) €C(G; [0, o)), i=1, 2,..., k,
H4. y(x, t)e C(dQ %[0, o0); [0, o0)).

Definition 1. The solution u(x, t)e C*(G) N C‘(G) of problem (1), (2) (1), (3))
is said to oscillate in the domain G=Q x (0, o) if for any positive number u
there exists a point (x,, ;) €Q X [u, 00) such that the equality u(x,, t,)=0 holds

2. Main Results

In the subsequent theorems sufficient conditions for oscillation of the
solutions of problems (1), (2) and (1), (3) in the domain G are obtained.
Introduce the following notation:

4 P(t)=min {p(x, t): xeQ},
P(t)=min {p{x, t): xeQ}, i=1, 2,..., k.

With each solution u(x, t)e C¥(G) n C*(G) of problem (1), (2) we associate the
function

©) ()= futx, t)dx, t20.

Lemma 1. Let conditions (H) hold and let u(x, t) be a positive solution of
problem (1), (2) in the domain G. Then the function u(t) defined by (5) satisfies the
dtﬁerentxal mequal:ty

k
6 ﬁ[v(t)+ 2 Ade)o(t —Ta)]+P(t)v(t)+ 2 P(t(t—0) =0, t=t,,

where t, is a suffi c:ently large positive number

Proof. Let u(x, t) be a positive solution of problem (1), (2) in the domam G
and let to=max {t,,...,Tp «esPpOq,--.,0; ). Then u(x, t —1,)>0, u(x,t—p;) >0
and u(x, t—o)>0 for (x, t)eQ x (to, oo) Integrate both sides of equation (1) with
respect to x over the domain Q and for t=t, obtain

) F[ fu(x, )ydx+ 2 ).,(t)j'u(x, t—1)dx]
— ;Au(x, fdx+ T m(t)f Au(x, t—p)dx]
l=l

+ Ip(x tu(x, t)dx+ E [ pdx, u(x, t—a)dx=0.

i=10Q
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By Green’s formula and conditions H4 it follows that

®8) [ Au(x, ydx= | %ds =— [ ¥x, udS =<0,
Q aon 0
0
©) [Au(x, t—p)dx= | 53(::, t—p)dS=— [ yx, t—pu(x, t—p)dS=0.
Q n n
Moreover, from (4) it follows that
(10) f p(x, tu(x, t)dx=P(t) f u(x, t)dx=P(t)v(t),
Q Q

(1) [ pdx, Du(x, t—a)dx= PLt) [ u(x, t—o)dx= P t)(t—a).
Q Q
Using (8)-(11) and condition H2, from (7)_ we obtain that
2 m k
%[WH Z At —t)l= —POu(t)— Z P{Ou(t—o)
i=1 i=1

which completes the proof of Lemma 1.m

Definition 2. The solution 1(t) e C?([t,, ©); R) of the differential inequality (6)
is said to be eventually positive (negative) if there exists a sufficiently
large positive number ¢, such that the inequality v(t)>0 (v(t)<0) should hold
for t=t,.

Theorem 1. Let conditions (H) hold and let the differential inequality (6) have
no eventually positive solutions. Then each solution u(x, t) of problem (1), (2)
oscillates in the domain G

Proof. Let 4>0 be an arbitrary number. Suppose that the assertion is not
true and let u(x, t) be a solution of problem (1), (2) without a zero in the domain
G, =Qx[u, ). If u(x, £)>0 for (x, )€ G,, then from Lemma 1 it follows that the
function «(t) defined by (5) is a positive solution of inequality (6) for t>t,+pu
which contradicts the condition of the theorem. If u(x, t)<O0 for (x,t)e G,, then
—u(x, t) is a positive solution of problem (1), (2). From Lemma 1 it follows that the
function v,()= —v(t)=— j u(x, t)dx is a positive solution of inequality (6) for

t>ty,+u which also contradicts the condition of the theorem.m
Now we shall investigate the oscillatory properties of the solutions of
problem (1), (3). In the domain Q consider the Dirichlet problem

(12) AU(x)+aU(x)=0, xeQ,

(13) U(x)=0, xeoQ,
where a=const. It is well known that the least eigenvalue a, of problem (12),
(13) is positive and the corresponding eigenfunction ¢(x) can (i)e chosen so that
@o(x)>0 for xeQ.

We each solution u(x, t)e C*(G) n C}(G) of problem (1), (3) we associate the
function :

(14) w(t)= [ u(x, D(x)dx, t20.
Q
We shall note that such averaging was first used by N. Yoshida [7]
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Lemma 2. Let conditions H1-H3 hold and let u(x, t) be a positive solution of
problem (1), (3) in the domain G. Then the function w(t) defined by (14) satisfies the
differential inequality

aZ m s
(15 ZabO+ T 2wl +awo+ T wOwe—p)

+ P(t)w(t) + £3 P(w(t—0,)<0, t2t,,
i=1

where t, is a sufficiently large positive number.

Proof. Let u(x, t) be a positive solution of problem (1), (3) in the domain G
and let to=max {7,,...,Tm, Py s O1r----50%). Then u(x, t—1;)>0,
u(x, t-—p,)>0 and u(x, t—a, )>0 for (x, t)eQx(to, oo) Multiply both s1d‘ of
~equation (1) by the elgenfunctlon ¢(x) and integrate with respect to x over the

domain Q. For t=t, we obtain

2 m
(16) %[I u(x, ) (x)dx+ I 4(0) fulx, t—1;) 9 (x)dx]
o Q

i=1

~ [ Bulx, 000+ T w0 Ak, t—p) p(x)d]

i=1

+ _fp(x tu(x, t)p(x)dx+ 2 j' pi(x, tu(x, t—a,)p(x)dx=0.

i=1Q
By Green’s formula it follows that

(17)  [Au(x, he(x)dx= [u(x, )A@(x)dx=—a, [u(x, )p(x)dx= —ayw(t),
o b o
(18) [Au(x, t—p)e(x)dx= [u(x, t—p,)Ap(x)dx= —a, ‘j, u(x, t—p;)p(x)dx
o )

= —“ow(t_l’i),

where a, is the least eigenvalue of problem (12), (13). Moreover, from (4) it follows
that

(19) [ p(x, thu(x, )p(x)dx=P() [ u(x, t)e(x)dx=P(t)w(t),
Q Q
(20) [ pi(x, u(x, t—a))p(x)dx = P,(t) [ u(x, t—0o;)p(x)dx =P (t)w(t—a,).
Q Q
Using that (17)-(20) and conditions H2, from (16) we obtain that

o 2[“’(‘)‘*“ Z AWt —1)]1< —ap[w(t) + 2 (Wt —p;)]

i=1
— P(O)w(t)— 7-3 Py()w(t—a,)

which completes the proof of LemmaZ [
Analogously to Theorem 1 the following theorem is proved:
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Theorem 2. Let conditions H1-H3 holds and let the differential inequality (15)
have no eventually positive solutions. Then each solution u(x, t) of problem (1), (3)
oscillates in the domain G. :

From the theorems proved above it follows that the finding of sufficient
conditions for oscillation of the solutions of equation (1) in the domain G is
reduced to the investigation of the oscillatory properties of neutral type
differential inequalities of the form :

k

. az m
@1) 50O+ T AOxt—T)]+a0x0+ F, a()x(t—0)S0, t>lo.
i=1 )

3

2 m k
@) O+ T 40—t a0x0+ F, a0x-a)Z 0. >lo:

1

Together with (21) and (22) we shall consider the neutral type differential
equation

2 m k
@) S0+ T A - +a0x0+ Z, a@—a)=0, t>to.
=1

i

Assume the following conditions fulfilled:
HS. 4,()eC?([ty, ©); [0, ), i=1, 2,..., m,
H6° Q(t), qi(t)ec([tO) (D); [0, w))’ l=1’ 2’---9 k-

Theorem 3. Let conditions HS-H6 hold as well as the following conditions:

(24) T A4S for t2t,,
i=1
(25) qu(t)[l_ z j'i(t—av ]dt:w
to i=1
for at least one number ve{l, 2,...,k}.
Then:

(i) the differential inequality (21) has no eventually positive solutions.
(ii) the differential inequality (22) has no eventually negative solutions.
(iii) all solutions of the differential equation (23) oscillate.

Proof. (i) Suppose that there exists an eventually positive solution x(t) of
the differential inequality (21). Hence x(t) >0 for t =t,, where ¢, =t,. Introduce the
notation

(26) Z(t)=x@t)+ X A,(t)x(t—7;), t=t,+7,
i=1
t=max {1,,..., T, }, 6=max{o,,...,0, }.
From condition HS5 it follows that
27 z(t)>0 for t=t, +.
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Using condition H6, from the differential inequality (21) for t2¢t,=t, +1+0 we
obtain

2'(t) = —q(e)x(t)— ‘E q:()x(t—0,)<0.
i=1

Hence the function z'(t) is monotone decreasing in the interval [t,, c0). We shall
prove the inequality

(28) Z(t)=0 for t=t,.
Suppose that these exists a number ¢, > ¢, such that z'(t;)= — C <0. Then for any
t=t, the inequality z'(t) < 2'(t5) = —C3 holds. Integrate tﬁe last inequality over the
interval [t;, t], t>t; and obtain

2(t) S z(t3) — C(t—t3).

Hence lim sup z(t)<0 which contradicts (27). Thus inequality (28) is proved.

Usin‘gdugondition H6, from (21) for t=t,, we obtain
(29 2"(t)+q,()x(t—a,) =0,
where ve{l, 2,..., k} and (25) holds. From (26) and (29) it follows that

20+a,0)[H—0)— T At—0,)x(t—0,—1)]S0.
i=1

Using the fact that z(t) = x(t) for t=t, and (28), from the last inequality we obtain
(30) () +g,(0)[1— Z A(t—0,)]2(t—0,)=0.
i=1

Integrate inequality (30) over the interval [t,, t], t>t,, and using condition (24)
and (28), we obtain

t m
2()—2(ty) + 2t —0,) [ 4,0 [1 — T Alt—a,)]de=<0.

ty i=1
For t—»oo from the above inequality it follows that

fa,@0[1— Z A(t—0o,)ldt<o0
t i=1
which contradicts condition (25).

Thus assertion (i) of Theorem 3 is proved.

(ii)) The proof follows from the fact that if x(t) is an eventually negative
solution of the differential inequality (22), then —x(t) is an eventually positive
solution of the differential inequality (21).

(iii)) From (i) and (ii) it follows that (23) has no eventually positive and
eveg}ltually negative solutions. Hence all solutions of the differential equation (23)
oscillate.m

A corollary of Theorem 1 and Theorem 3 is the following sufficient
condition for oscillation of the solutions of problem (1), (2).
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Theorem 4. Let conditions (H) hold as well as condition (24) and the following
condition:

(31) jP @®[n- 2 A(t—o,)dt=0o0
o
for at least one number ve{l, 2,. l
Then each solution u(x, t) of pro lem (1), (2) oscillates in G.
A corollary of Theorem 2 and Theorem 3 is the following sifficient condition
for oscillations of the solution of problem (1), (3).

Theorem 5. Let conditions (H) hold as well as condition (24) and the following
condition :

(32) J' u.,(t)ll— E A(t—p,)]dt=o00
o
for at least one number ve{l, 2,. or condition (31).

Then each solution u(x, t) of pro lem (1), (3) oscillates in G.
Example 1. Consider the equation

1
(33) ot gt =)~ [t 2uee 5, =+ 3+, =) =0,

(x, t)e(0, m)x (0, o0) = G, with boundary condition
(34) u (0, t)=u.(n, t)=0, t=0.
A straightforward verification shows that the functions

LO=3 mO=2 px D=3, Pl D=1, %x, D=0

satisfy all conditions of Theorem 4. Hence all solutions of problem (33), (34)
oscillate in the domain G. For istance, the function u(x, t)=cos xcost is such a
solution.

Example 2. Consider the equation

(33) Uy + e uy(x, t—7)—[Uure+3e "u (x, t—n)]+2u=0,
(x, t)e(0, ®)x (0, o0) = G, with boundary condition
(34) u(0, t)=u(n, t)=0, t=0.

A straightforward verification shows that the functions
A)=e™™ u)=3e"" p(x, ) =2, py(x, ) =0
satisfy all conditions of Theorem 5. Hence all solutions of problem (35), (36)

oscillate in the domain G. For instance, the function u(x, t)=e ™ *'sin x cost is such
a solution.
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