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In this article several topological characterization of the Tikhonov well-posedness for minimum
problems for preorders are given. It is investigated what happens with the well-posedness in the
quotient space which is obtained by identifying the elements that are not “distinguished™ with respect
to the preorder. Possible generalizations, not requiring uniqueness of the solution, for both the
well-posed unconstrained and constrained minimum problem are proposed. Characterizations for
them are also proved.

1. Introduction and preliminaries

- The main goal of this paper is to provide some topological characterizations
of Tikhonov well-posedness for minimum problems for preorders. This property
is a direct extension of the analogous one for functions to be minimized: we refer
to [4, 6, 12 and 14] for functions and to [10, 11] for preorders.

Before proceeding further in the description of our results let us see what is
the meaning of well-posedness both for functions and preorders.

Let (X, 7) be a topological space and f: X — R be a real-valued function on it.
The problem of finding a minimum of f on X (which we denote by (X, f)) is said
to be Tikhonov well-posed [14] if the function f has unique minumum x, in X and
every minimizing sequence (x,)< X (that is f(x,)— >inf(X, f):=inf{f(x): xeX })
converges to x,. If (X, f) is Tikhonov well-posed then every minimizing net (not
only every minimizing sequence) converges to its unique solution (see [3, 9]). As
usual, argmin(X, f) will denote the set of all minima of the problem (X, f).

Further let us remind that a relation = on some set X is said to be
a preorder if it is reflexive and transitive; if = is also total, the preorder is said to
be total. Notice that, given f: X — R, this f induces a total preorder on X by
means of the following:

(*) x=y iff f(x)=f()

Conversely, under some restrictions a total preorder can be represented by
a real-valued function (i.e. so that (*) is satisfied): see [5].

* Work supported by the Bulgarian Academy of Sciences and Consiglio Nazionale delle Ricerche
trough an exchange program. s :
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Given a preorder = on X and a non-empty subset A of X, we shall denote
by (4, =) the problem of finding a minimum for = on 4, i.e. to find x,€ A4 such
that x,=x for every xe A. The notation min(A, =) will designate the set of the
minima of (A4, =). Following the usual terminology (4, =) will be called
unconstrained provided A= X, otherwise (4, =) is constrained. In the first three
sections we consider only unconstrained minimum problems for preorders.

The following two definitions are given in [10].

Definition 1.1. A net (x,) is said to be a minimizing net for (X, =) iff for
every xeX which is not minimum for = on X, we have x,—< x eventually.
Here x =y, x, yeX, means x =y, but not y=x.

Definition 1.2. The problem (X, < ) is said to be Tikhonov well-posed
(briefly w.p.) iff:

1) there is a unique minimum x, for = on X;

2) every minimizing net of (X, =< ) converges to Xx,.

A constrained minumum problem (4, =), 4 = X is called w. p. if (4, = | A4) is
w.p., where = | A means the restriction of = on the set A.

It is worth being mentioned that w. p. of a f: X — R and of the preorder = on
X represented by f are related: w.p. of = implies w.p. for f; moreover given f,
a function J: X — R can be defined so that f'still represents = and w.p. for = and
for f are equivalent (see [10]).

To get characterizations of w. p., we shall involve the topology on X directly
coming from the preorder, denoted here by 7,,. By means of this topology it will
be immediate to characterize minimizing nets, and to identify w.p. through
a comparison of the two topologies, 7 and t,,. Moreover, we shall express w. p. as
upper semicontinuity of the “level set” correspondence.

Furthermore, the topology t,, will allow us also to provide some conditions
under which sequential w. p. (that is the condition 2) in Definition 1.2 fulfilled for
sequences instead of nets; see Section 2) implies w. p., and to clarify to some extent
the relationship between w.p. for = and w.p. of a real-valued function
representing it.

~ Sections 3 and 4 will be devoted to related topics: in Section 3 we shall
compare w.p. of a total preorder = and w.p. of the induced (quotient) total
ordering. In Section 4 generalizations of w. p. and of the strong well-posedness for
(constrained) minimum problems for preorders (introduced in [11]) are given.
They are inspired by the well-known Furi-Vignoli generalization [6] of Tikhonov
well-posedness for functions and do not require the uniqueness of the minimum.
We get characterizations of generalized w. p. similar to those obtained for w. p. (in
particular using t,,). Furthermore we shall get also a characterization of
generalized strong w.p. by means of Kuratowski measure of non-compactness,
quite similar to that one proved in [6].

2. Topological characterizations of Tikhonov well-posedness

This Section is devoted to the use of the natural topology on X generated by
a preorder = on X for study of w.p. of (X, =).

Definition 2.1. Given a set X and a preorder = on it, the preorder topolog}y
7,, on X is the topology which has as a subbase the family of sets {( «, x[:xeX},
where («,x[={yeX:y<x}.
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Notice that, when = is total, the family above becomes a base, provided we
add the whole space X to it.

It should be clear that the role of t,, is to express the idea of minimizing net
in topological terms: so, the following result is foreseen, and its proof is
straightforward.

Lemma 2.2. Let = be a preorder on X, and assume that there is a minimum x,

for = on X. Then a net (x,) is minimizing for the problem (X, =) iff x‘EPL. Xo-

Proof: Let x, be a minimum for the preorder = on X and (x,) is

a minimizing net for the problem (X, = ). Take a ,,-neighbourhood U of x, from
the base. Then U= N («, y,[, F-finite, non-empty. Since x,€(+, y;[for every

ieF, y, are not minima for (X, =). Now using the fact that (x,) is minimizing we
have x,e(«, y[eventually for every icF. Hence (x;) is eventually in the
intersection.

Conversely, let (x,) be t,,-convergent to x,. Given y not minimum, notice
that it must be xo=<y: so («, y[ is a neighbourhood of x, for 7,. Hence (x,)
eventually enters it, which means that x,=y eventually. Consequently (x,) 1s
minimizing for (X, = ). The proof is completed.

Let us recall that a correspondence T acting from a topological space Y into
the subsets of a topological space Z is said to be upper semicontinuous (briefly
usc) at y, € Y if for every open in Z set U such that T(y,) < U there is an open set
Vay, with T(y) € U whenever ye V. For more details about correspondences the
reader is referred to [7].

Now we are able to prove the first characterization of w.p. This is achieved
through the level set correspondence Lev (x)=$yeX ; y=2x}, xeX (see [9] for an
analogous result for minimum problems for functions).

From now on X is endowed with a topology t and a preorder = .

Theorem 2.3. Let = be total. Then the minimum problem (X, =) is w.p. iff
there is x,€X such that the level set correspondence Lev:(X, t,,) — (X, 1) is usc and
single-valued at x,.

‘In’ this case 1t will turn out that min(X, = )={x,}.

Proof. Let (X, =) be w.p. with unique solution x,. Then obviously Lev is
single-valued at x,. Suppose Lev is not 7,,-t usc at Xx,. 9I'his means that there is
a t-neighbourhoog U of x, such that for every t,,-neighbourhood ¥ of x, we can
find x, €V such that Lev(x, )\U #0. Let us take z, from this non-empty difference
and direct the local base of ,,-neighbourhoods of x, by inclusion. In this way we

obtain two nets (x,) and (zy). Since x, &> x4, (x,) is a minimizing net for the

minimum problem (X, = ). From z,=x, we get that (z,) is minimizing for (X,
=) too. This is a contradiction with the well-posedness of (X, =), since z, # U for
every V.

Conversely, let Lev be single-valued and 7, =t usc at some x,. Then, using
totalness of = , it is routine to check that x, is a solution of the minimum problem
(X, = ). Further, single-valuedness of Lev at x, shows that x, is the unique
minimum of (X, = ). At the end let (x;) be a minimizing net for (X, = ). Then
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T i : s
x, -2 x,. Since x,€Lev(x,), from the t,-t upper semicontinuity of Lev we

: T .
obtain x,— x,. The proof is completed.

We note a fact that will be present also in the following characterization of
w.p. (Theorem 2.4). In the “only if” part of the above theorem totalness of = is
not needed. For the “if” part totalness enters only in proving that x, is a minimum
point: the uniqueness of the minimum and convergénce of minimizing nets is
assured without totalness. So the following variant of Theorem 2.3 is true not
assuming totalness of the preorder.

Theorem 2.3'. Assume that min(X,= ) is non-empty. Then (X,= ) is w.p. iff
there is xo€ X such that Lev:(X, t,)— (X, 1) is usc and single-valued at x,.
A further characterization of w.p. is the following

Theorem 2.4. Let the topology T be T, and = is total. Then (X,= ) is w.p. iff
there is xo,€ X such that each t-neighbourhood of x, is a Tpe-neighbourhood of x,.
As in Theorem 2.3 it turns out that (x,)=min(X, = ).

Proof: Suppose (X, =) i§ w.p. with unique solution Xx,. Take
a t-neighbourhood U of x,: Assume that for every 7,,-neighbourhood V from the
local base of x, we have x, € V\U. Now we can proceed as in the proof of the
“only if” part of the Theorem 2.3 to get a contradiction.

Conversely, assume there is x, from X such that each z-neighbourhood of x,
is its 7,,-neighbourhood. We prove that x, is a minimum for (X, = ). Suppose
there is ye X such that y<x,. Take a t-neighbourhood U of x, such that y¢U.
Since U is also a r,,-neig%bourhood of x, there is some xeX such that
Xo€(+, z[ = U. But we have y<x,<z, so ye(+, z[. The last contradicts y¢U. To
prove that x, is the unique minimum for the problem (X, =) we have to assume
the existence of another minimum y and to proceed as above replacing y <x, by
y=x,.

Now, let (x,) be a minimizing net for (X,= ). Then (Lemma 2.2) x l_fl. Xo»

T .
hence x;— x,, thanks to the assumptions.

The theorem above has also a variant without assuming that = is total. For,
let N ={xeX: every t-neighbourhood of x is a 7,,-neighbourhood of x}. Then the
following is true.

Theorem 2.4'. Let the topology t be T,. Then (X, =) is w.p. iff both min (X,
=) and N are non-empty. .

The proof of this theorem is a simple consequence of the proof of the “only if
part” of Theorem 2.4 and the following

Proposition 2.5. Suppose t is T, and N #9. Then min(X,= )< N.

Proof. Let y,emin(X,= ). If y,¢N, there is xo€N such that x, # yo. Hence
we can find a t-neighbourhood U of x, such that y,¢U. Suice U is also

t,,-neighbourhood of x, there are y,,...,y,€X such that xoe N (<, y;[<U.
i=1
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Thertzfore Vo= xo<Yo for every i=1, 2...k. From this we get y,<y;, hence
Vo€ N (<, y;[, so yoeU, which is a contradiction.

“The conclusion of Proposition 2.5 is not true if we omit the assumption
N # 0 (see the example in Remark 3.3 below).

Another interesting use that can be made of 7, is the following theorem. In it,
seq-w. p. (in short from sequential w. p.), means that (X, = ) satisfies Definition 1.2
with sequences instead of nets in part 2).

Theorem 2.6. Assume that there is a unique minimum x, for = on X and that
X, has a countable t,-local base. Then seq-w.p. for (X, =) implies w.p.

Proof: Let (X, = ) be seq-w.p. with unique solution x,. Let (x,) be
a minimizing net for (X, = ). Suppose (x,) does not converge to x, with respect to
the topology . Then there is a subnet (x 1“) of (x,;) and a t-neighbourhood U of x,

such that x, ¢U for every pu. Take now a countable 7, -local base for x, {V;} 2,
such that V,,, < V; for every i. Since (x l") is minimizing for (X, =), for every
i there is x 2, € V,;:so, (x 4“) is a sequence t,,-converging to x,, hence t-converging

to x, because of seq-w. pI This is a contradiction, since this sequence is always
outside U.

Remark .2.7. If = can be represented by f: X — R and x, is a minimum for
(X, =), obviously we are assured there is a countable t,,-local base for x, (and
consequently seq-w. p. and w. p. for (X, =) coincide). It is known (see [5]) that the
existence of f representing = is equivalent to the existence of a countable subset
E of X such that for every x, ye X with x<y, there is zeE such that x<z<y.
However, this condition is not necessary for x, to have a countable 7, — local
base, as is seen by the following example.

Example 2.8. Let X ={(x, y)e R2:0<x<y}. Consider the total order = on
X defined as follows: (x,, y,)=(x,, y,) iff x, <x, or (x;=x, and y, <y,). It is
immediate to see that (d, 0) is the unique minimum for (X, = ) and that this
problem is seq-w. p. Moreover, the sets {(x, y)eX: (x, y)<(1/n, 0)}, n=1, 2,...,
provide a countable 7,,-local base for (0, 0): so, we have w.p. for (X, =) too.
Notice, however, that it is not possible to represent = by a real-valued function,
not only on X, but even on any interval [(0, 0), (x, y)] (of course with (0, 0) # (x,
)

Another interesting feature that is worth being mentioned in this context is
the following

Remark 2.9. Given f: X - R and = induced by f on X, two topologies
related with w. p. can be introduced on X. One of them is, of course, 7,,, and the
other one 7, has as a base the sets from the form (xeX :f(x)<a}, aeR. It is
immediate to see that . is finer than 7,,, but they are not obliged to coincide. To
see orclle example, consider the following two functions which represent the same
preorder ’

(769 if x>0
7(")={ and f(")‘{—l if x=0.

Then {0} ¢ 7, =17, while {0} e7,. But if f represents the preorder = the following
function

x if 0=x=<1
1/x if x>1
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f) = inf(f(x): xeX\arg min (X, f)} if xeargmin(X, f)
771 f(x) otherwise

represents the same preorder (see Theorem 3.5 from [10]) and has the property
that 7;and 7, coincide. As a matter of fact, the coincidence of 7;and 7, is another
;vay tclxlgt]re the equivalence between w.p. of fand =, as proved in Corollary 3.7
rom .

Moreover, it is easily recognized that results like Lemma 2.2 or theorem 2.3
and 2.4 can be proved, to express w. p. for a given f by means of 7. Therefore the
topologies 7, and 1, provide another way to understand the relationship between
w.p. for f and for the induced preorder = .

3. About well-posedness for "quotient ordering

Let be given a topological space (X, t) and a total preorder = on it. The
relation ~, defined by x ~ y iff x< y and y=x, is an equivalence relation and the
corresponding quotient space X/~ of the equivalence classes [x], xeX, will
become a totally ordered set with the preorder = , defined in the obvious way
[x]=,[y] iff x=y. We want to investigate the relqationship between the usual
quotient topology (7,,), on X/~ generated by 7, and the topology on X/~
induced by the total order = ,, denoted by o,

Let us recall that when a topological space (Z, t) and an equivalence relation
p on it are given the usual quotient topology 7, generated by t on the set of
equivalence classes Z/p consists of all sets U = Z/p such that g~ Y(U)is openin Z.
Here q:Z — Z/p is the natural quotient mapping assigning to every zeZ the
corresponding equivalence class [z].

In our setting we prove:

Proposition 3.1. The quotient mapping.q: (X, t,,) = (X/~, (Tpr),) is open and
a base for the topology (t,,), on X/~ is the family {g((«, y[):yeX}u{X/~}.
Proof: Let W # X be open in (X, t,,). Then W= U (+, y,[ for some set 4.

ae A
We have g(W)= U g(«, y,[). Since g 'q((«<, y.[)=(+, y,[, it follows that

q(W) is open in (a)e( 7 ~, (tpr),). To prove the second statement, notice that for
Ue(tp)y 4~ (U)ET,, hence 4~ (U)= U (e, [ for some 4, so U=alg™'(U)

ae A

= U q((«, y.[)
ae A

From this proposition we see that (t,,), =0,,, because, by q((-, y[)=(<,DIl
it follows that they have a common base of open sets. Eventually we can prove:

Theorem 3.2. Let (X, = ) be w.p. with respect to the topology t. Then
X/ ~,= ) is w.p. with respect to the quotient topology T,.

Proof: Let x, be the unique minimum for (X, = ). Of course, [x0] is the
unique minimum for (X/~, = ). Let ([x,)] be minimizing net for (X/~, = ). Take
Y€X such that x,<y. Then, [x,]<,[y] and consequently [x,1<,D] for large 4,
hence x, <y for large A. Therefore (x,) is a minimizing net for (X, =). The last
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. T . .
entails x,— x, due to the well-posedness. Hence, since as is well-known the

quotient mapping is T—1t, continuous, we obtain [x;]1—> [xo]. The proof is

completed.

Remark 3.3. The converse of the above theorem is not true, even if we have
uniqueness of the minimum for (X,= ). Take X — R? defined as follows: (x, y)e X
iff (x, ¥)=(0, 0) or (x>0 and ye[—1, 1])). Define (x,, y,)=(x,, y,) iff x, <x, and
consider on X the inherited Euclidean topology . Clearly, (X/~, = ) is w.p,,
while (X, = ) is not.

4. Generalized Tikhonov well-posedness

This last Section is devoted to the generalizations of two notions: one is the
idea of generalized Tikhonov well-posedness for preorders, clearly inspired by the
analogous idea for functions [6]; the other one is to look at constrained problems,
and to do the same with the strong well-posedness for preorders (introduced and
studied in [11]).

Let X be a topological space with a topology 7 and a preorder = . Following
an idea from [6] we give the following

Definition 4.1. The problem (X, =) is said to be generalized Tikhonov
well-posed (briefly g. w. p.) if the set of minima for (X, =) is non-empty and every
minimizing net for (X, =) has a subnet converging to a minimum for (X, =<).

For the corresponding notion for functions the reader is referred to [3] and to
[1] for other possible ideas of generalization. Observe that if (X, =) is g. w. p. then
min(X,=) is (non-empty) and compact.

We remark that there are preorders without any minimizing net. For
example take X =[(0, 0), (0, )]U[(1, 0), (1, 1)] = R? with (x,, y;) (x;, y,) iff
X, =X, and y, <y,, (x;, y;)€X, i=1, 2. It is easy to see that there is no minimizing
net for the problem (X, =

The following is a characterization of g.w.p. similar to Theorem 2.3. For
functions an analogous result was observed by R. Lucchetti and the second author
(private communication).

Theorem 4.2. Let = be total. Then (X, =) is g.w.p. iff there is a non-empty
t-compact subset K of X such that the following two conditions are fulfilled:

(1) Lev(x)=K for every xeK;

(i1) the level set correspondence Lev:(X, t,, — (X, 1) is usc at any xeK.

Proof: Let (X, =2 ) be g.w.p. Then K=min(X, = ) is non-empty and
compact. Obviously i) is fulfilled for K. Also to ii), assume the contrary. Then, the
Lev correspondence is not 7,,—t usc at some x,€K. This means the existence of
a non-empty t-open set lf of X such that Lev(x,)=K = U and for every
7,.- neighbourhood V of x, there is a point y, € V with Lev(y,)\ U #Q . Procee-
ding as in the fproof of Theorem 2.3 we obtain a minimizing net (z; ) for (X, = )such
that z, ¢ U for every V. Hence no subnet of (z,) converge to a pomnt of
K=min(X, = ). This is a contradiction.
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Conversely, let a non-empty t-compact subset K of X exist satisfying i) and
ii). We prove that K =min (X, = ). First, K < min (X, =). Indeed, let xe K: if ye K
we have x =Xy since xeLev(y); if y¢ K, y ¢ Lev(x) yielding x <y. That K =2 min(X,
=) is a consequence of the fact that for every xeX Lev(x) 2min(X,=).

Let, further, (x,) be minimizing net for (X, =) which means that x; — x in
the 7,,-topology for every xe K. We prove that there is a point x,€ K such that
each t-neighbourhood of x, contains a cofinal part of the net (x;). Suppose the
contrary: for every xeK there is a t-neighbourhood U, of x and 4, such that

x,¢ U, for every A= 4,. Since K is compact there are x,,..., X, from K such that
K< v U,. Take U:= v U, and let A2max{i: i=1,...,k}. Then x,¢U.
i=1 i=1

This is a contradiction with the 7, —t upper semicontinuity of Lev at any point of
K. Now, having some x, from K, each t-neighbourhood of which contains
a cofinal part of the net (x,), it is a standard procedure to organize a subnet of (x;)
converging to x,. The proof is completed.

At the end of this section we shall give a generalization of the strong
well-posedness for constrained minimum problems for preorder in the setting of
metric spaces, that was introduced in [11]. For the generalization of the
corresponding notion for functions we refer to [13]. Another approach for
functions is given in [2].

Let X be a metric space with a metric d, = be a preorder on
X and Q) # A < X. A sequence (x,) is called in [11] a minimizing sequence in
generalized sense (briefly g.m.s.) for the problem (4, =) if

1) d(x,, 4)—0;

2) for every xe X such that there is ye 4 with y <x, we have eventually x, < x.

Here d(x, A)=inf {d(x, y): ye A} is the distance function generated by the set
A. The problem (4, = ) is strong well-posed ([11]) if it has unique solution towards
every g.m.s. converges. It is seen that strong well-posedness of (4, = ) implies
seq-w. p. of (4, = ).Here we give the following (natural) relaxation of this notion.

Definition 4.3. The problem (4, = ) is said to be generalized strongly
well-posed (g. s. w. p.) if the set of minima for (4,~= ) is non-empty and every g.m.s.
has a subsequence converging to a minimum for (4, =).

Observe that if (4, = ) is g.s.w.p. then min(A4, =) is a non-empty compact
subset of X. .

The preorder = is said to be lower semicontinuous (briefly Ls.c.) if all sets
from the type {yeX: y=x}, xeX, are closed. Let us assume that (X, d) is
complete, A is closed and =< is l.s.c. Consider M, the set of all g.m.s. (x,) for (4,
=) such that

1) d(xp+y1, A)<d(x,, A) for every n;

) Xa+1 X, for every nm;
3) for every n there is yeA such that y<x,.
Given (x,)eM, we define

L,:={xeX: x=2x,, dx, A)<d(x,, A)+1/n}.

Note that, under our assumptions, x,eL,, Ly+; = L,, L. are closed and

N L,=min (A, =). Moreover, if z,€ L, for every n, then.(z,) is g m.s. for (4, f).

n=,
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Before proving Theorem 4.4 we must introduce some more terminology.
Given E < X, by «(E) we denote the Kuratowski measure of non-compactness of
E which is the infimum of all numbers £> 0 such that E can be covered by a finite
number of subsets of diameters less or equal to ¢ (for more details see [8]).

Theorem 4.4. If there is (x,)€ M such that for the corresponding L, we have
a(L,) — 0, then (A, =) is g.s. w.p. Conversely, if (A, =X ) is g.s.w.p. then for every
sequence in M we have «(L,) — O for the corresponding L.

Proof: Let there be a sequence (x,) from M such that for the corresponding

L,«L,)—0.Then n L =min(4,=)is non-empty and compact (see [8]). Take
n=1
(v,) a g.m.s. for (4, =), and let x,emin(4, =).
Taking x,, we have x,<x, and consequently y, <x, for some n,. It

is no loss of generality to assume (having in mind that d(y,, A4)—0) that
dWy,,,A)=d(x,, A)+1. Further, for x, in the same way we find n, >n, such that

Yn, <X3 and d(y,,z, A)<d(x,, A)+1/2. Proceeding in this way we obtain
a subsequence (y,, ) of (v,) such that y, <x, and d(y,,, A)=<d(x,, A)+ 1/k for every
k. Therefore y,,keL,, for all k. From the last, a standard procedure gives a further

subsequence of (y,) converging to a point from II L,.

Conversely, let (4, =) be g.s.w.p. Take aﬁ;l(x,)eM and consider the
corresponding L ,. Suppose a(L,)> >0 for some & and every n. Since min(4,=)

is compact, there are finitely many elements z,,..., z, from min(4, =) such that
k

U B(z;, 8) = min(A, =) (here B(z;, 8) are the open balls qentered at z; with radius

i=1

k
5). Consider the open set U := U B(z;, §). Obviously each L, contains a point y,
i=1
not belonging to U, because otherwise a(L,)<d for some n. Therefore (y,) is
a g.m.s. which cannot have any subsequence converging to a point of min(4, =).
The last is a contradiction.
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(z,y) < (1/n,0)
f(z) =inf(f(z): =

(z,y) < (1/n,0)
f(@) =inf{f(z’): &'

Due to mailing problems the authors were not in a position to make
the corrections in the proofs of their paper. The editors apologize for
this annoyance and publish the printing errors herein.
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