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Transformation of a One-Dimensional Diffusion Process
into a Wiener Process by Means of Random Change
of Phase Space

I. D. Cerkasov

Presented by Bl. Sendov

The article reports the conditions, under which a certain function ¥ of the diffusion process x(r)
presents a Wiener process. The function ¢ is random due to another diffusion process y(t). Random
change of time is also applied.

1. Formulation of the problem and main notation

Let n and m be fixed natural numbers, r=n+m, T=const>0, J=[0, T], R{ is
a k-dimensional Euclidean space or a certain one-connection domain of it with
sufficiently smooth boundary, the points of R; are des1g1;ated as x=(x,..., x*y
with prime denoting transposition of a vector or matrix. We use (Q,Z, P) to
denote a complete probability space, F = {F,, teJ} is the o-algebras flow in Z, w, is
a standard separable Wiener process in the Phase space (R, %) adapted to the
flow F, R=(— 00, ), w,=w,(0)=w(t, ®)=(w; ,...,w;), teJ, 0€Q. There are given
n- and m-dimensional vector-columns b'(t, x), b?(t, x, y) as well as the matrices
al(t, x), c*(t, x, y) of nxr and mx r dimensions respectively, defined and taking
real values when xeRZ, yeR?, teJ. The functions b*, o* are such that with any
fixed x,eR%, y,€RY the system of It6 stochastic differential equations

dx(t)=>b'(t, x(t))dt+o'(t, x(t))dw,, x(0)=x,,
(1) dy(t)=b2(t, x(t), W) dt+a’(t, x(t), W t)) dw,, W0)=Y,
determines uniquely (up to stochastic equivalence) the strong solutions
x,=x(t)=x(t, ®), y,=Y(t)=Mt, w), which form the diffusion process z(t)= (x;, y;)
with values in RXx RY,. For the given continuous function »(x, y) with values in
[e, C), xeR%, yeR}, where 0 <e=const< C=const < oo, we shall consider the

random process ©(t)= [ w(x,, y,)ds, denoting by {(z) such a function for which
with =1, 0.4

(3] t={(@)={(, o), ®,)=s, {(0)=0
assuming henceforth that T=oc0, J=R,. Suppose that
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(3) f,=x(C(1.’)), y-t=y(C(T))’ F:=F((r)9 F= {F 3] TEJ},

and C(k, n) is the set of vector real-valued functions on J x RZ x R, defined and
continuous together with k-order derivatives with respect to teJ and n-order
derivatives with respect to x', y, i=1,...,n, j=1,...,m. The problem is to
construct the function Y(t, x, y)e C(1, 2) such that 7(z) =y({(2), X, y.) would be a
n-dimensional Wiener process. Note, that the possibility of transforming a
one-dimensional diffusion process into a Wiener process by using the absolutely
continuous change of measure and random change of time is proved in [7]. The
method of Wienerization of diffusion processes with the help of the non-random
functions v=1(t) and Y(z, x) is developed in [1]-[3], [5], [8]-{10]. The present article
tackles the problem of Wienerization of the diffusion process x(t) by using a
random change of time. The problem is formulated for a multidimensional
process, while the most exhaustive solution is offered so far only for n=1.
In what follows we introduce the following notations:

0 X __ 0 — 0 | S | +k __
a!_—a—t’ al' _ax." a{—ayk’ zZ =X, z" _yka
X a | X X
a_i =azj9 aixliz =ai1 a‘i‘z’ 6{1"2 =a{1 6{2’ ajl =a;alx:

X X
zZ= Zl,...,z', Z,= ‘)’ 2¢=(_')’
@t 2= (5 -

bl(t, x) _ al(tr x)
s 9= (e ) o 9= (e ))

i, iy, i,=1,...,n, k, ky, ky=1,...,m, J, I=1,...,r.
As a diffusion process, z, is described by the Itd equation
“) dz(t)=b(t, z(t))dt+at(t, 2(t))dw,, 2(0)=z,,
where zy=(xp, yo). If we introduce the vector-column 8,=(03,...,0;) and the
matrix a=0,500’, then
5 A(t, z)=b'(t, 2)0,+]a(t, 2)0,]0,

will be the generating differential operator of the process z(t). :

Let P, ,(t, T') be a transition function for the process z(t), E, E,, . denote the
expectation. If z_ here is a diffusion process, then its transition function P, .(z,T)
and transfer vector b(zr, z) are

Ps.z(ta F)=E[Ez.CuP(u.z(Cn n],

1 /
bz, z)=HmEE, ([~ [ @—2P. :(+as 925
AlO * A 1z —z]<é
a similar formula may be derived for the diffusion matrix a(z, 2). If z, is a
time-homogeneous process, then the generating differential operators o (z) of the

process Z, and &/ (z) of the process z, are connected by the relation
(6) A (2)=[u2)] "' # (2)-
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2. Wienerization of a multidimensional process

We shall study the conditions of Wienerization of x, (v=1), having
introduced additional notations:

a=(al,...,a), a=b"—0,5¢’'0,) o', u=(uf),
u is a matrix consisting of n rows and r columns,

i=1,...,r, k=1,...,n, a*=(*,...,a*"), I=(0u)],

1
5kl=0(k #* l): 1 (k=l)’ a‘k= - Z dafuf,
2 1Sisr
identical Latin subscript and superscript of a monomial denote summing up
within the range from 1 to r. The task is to construct a function ¥(t, x, y)eC(1, 2),
Vv=@W",...,y") such that

0) [0,+(t, 2)]y=0, (,¥'Yad, ¥’ =0,5I

([kll], p- 298) and that at any fixed teJ, yeR}), the system of equations
n*=yXt,x,y), k=1,...,n, have the unique solution for x' as

8) x=yit, n, y), i=1,...,n, n€R", xeR;.

The conditions (7), (8) provide a possibility of transforming the diffusion process
x, into the Wiener process 7(t), and conversely, expressing x, through the Wiener -
process 7,:

) "t='l’(ta X¢s y,), x¢=¢1(t’ N> Yx)"

Accordingly ¢ and ¥, may be considered as reciprocally inverse functions for any
fixed (¢, y,)eJ x R},.

Henceforth we assume that everywhere be C(0, 1), 6€C(1, 2), |o| #0,6=0" 1
G=(6%),, & is a piecewise smooth curve in J x Ry x R}, joining a fixed point
(0,x,,,) to a variable point (¢, x, y), with i being the number of a column and
k — the number of a row of the matrix 6. The following Lemma is valid.

Lemma 1. For the existence of a function Yye€C (1, 2) realizing a random
Wienerization of the process x, it is necessary and sufficient that a certain matrix
ueC (1, 2) satisfy the system of differential equations

(10) F(Giul)=0;(Giul), 8,(6'w)=0,(a*—ad'W),
with uw'=1, and that for any fixed teJ, yeR}, the function
(11) Y(t, 2)= [ (a*—ad’'u'y dt+uédz

L4

should map RZ in a one-to-one fashion into R" (Condition A).

Proof. Without proving sufficiency we shall outline a scheme for proving
necessity. If (7) and (8) hold, we, having introduced the notation u=(d,y')a,
obtain the system of equation for u and y:

(12) oW+ d,Y=a* (0,¥).0=u, lu=1.
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Solving this system with respect to the derivatives gives
13y o,y =6, 0,y'=a*—aé’u'.

Forming the consistency conditions for this system, we get (10).
In what follows we introduce the assumptions: suppose a diffusion process
Q(t) adapted to the flow F admits stochastic Itd differential

(14) : dQ(t)=Q, dt+Q,dw(t), Q(0)=0,

where Q, =Q(t, Q) is an n-dimensional vector and Q,=Q,(t, Q) is a matrix of
dimension nxr. If under these conditions Q, =0, 0,=0,05=1, then Q(¢) is
a Wiener process. Moreover, if

(15) Q,=(0),

where O is the n x m-matrix of zero elements, then Q(z) is called a pure Wiener
process. The latter is stochastically equivalent to the process w(t). The processes of
Wiener type which are not equivalent to any pure Wiener process are called
mixtures (or mixed Wiener processes). It should be noted that with a*=0 from

(11) we get the following formula.
(16) Ul(t, z2)= j(—u&a’)dt+u&dz.
K4

Corollary 1. For the random pure Wienerization of the process x, with the help
of the function YyeC(l, 2) it is necessary and sufficient that with i=1,...,n, k,

=1,...,r
(17) 0,6i—0,6i=0, 3,6L+0,(a’65)=0,
and that function y=(",...,y") along with
(18) Yie, x, y)= [ (—a*Gi)dt+id*
£

satisfy condition A, i=1,...,n.
The proof is based on (11).

3. Lemmas on random Wienerization of a one-dimensional process

Suppose that n=m=1, r=2, R,(t), R,(t, x) are intervals in R, where teJ,

x€ R1), (R;, B') is the phase space of the diffusion process x,, i=1, and y,, i=2,
respectively. Assuming that the processes x,, y, are not time-homogeneous, we
introduce the following notations:

2o=(Xo, Yo), 0, =0/0x, 0,=0/0y, z=(x, )Y,
zl=x’ 22=y’ az=(al' az)" z,=(x,, yt)l’
wl=(wll’ W‘Z” l)(Z)=D(X, y)s

_ (b, x) B _ (o1t x)0}(t, %) )
o, z’“(b’(t,x,y))’ o=ol, z"(a%(t,x,yw%(r,x,y) ’
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1
a=§ao", lo|=016%—06%0i #0, z,=(X,, J.)>
O'k=(0':, 63)’ G'k=(0'k1, 0'%), a=(al9 a2)9
1 . .
*=bt =20} 0,04 +050,0%), k=1, 2

The Itd equations for the processes x,, y,, z, are
dx(t)=b'(t, x(t))dt+o'(t, x(t))dw,, x(0)=x,
(19)  dy)=b*t, x(t), Y )dt+a*(t, x(y), Wt)dw,, 10)=y,,
dz(t)=b(t, z(t))dt+o(t, z(t))dw,, 2(0)=2z,.

Lemma 2. For the random Wienerization of the one-dimensional diffusion
process x, with the help of the function z)eC(2) and that of the process y,, defined
by the system of equations (19), it is necessary and sufficient that there exists
a vector u=(u,, u,) such that

(20)  0,(65u)=0,(F}w), 0,(a*—ad W)=03,6" ), lul=\/v,
and that the function (11) satisfies condition A. Thus G=¢7', 6=(6})i,
oc"‘=—l Z of0;u.

1sks<2

Subsequently we consider vector b and matrix ¢ in (19) as not depending on
time. Introduce the notations:

B=(B!, B?), C=(C', C?), B=2x(¢')"",
Crt=(—1)""lo|0lol ~' o3-4), k=1, 2.

Lemma 3. For the Wienerization of x(t) by means of the function yeC(1, 2)
linearly depending on time, when o (t, z)= < (z), v=1, it is necessary and sufficient
that there exist a constant geR and a vector u(z)=(u,(z), u,(2))€C(2), lu|=1 such
that :

g+ Bu' +(0’3,) ' =0,

(21

a%0,u,—ao% du,+Cu'=0.
If this condition holds, the function § takes the form

(22) (e, x, y)= [ (g/2)dt+(uo ~")dz,

provided that it satisfies A (the latter is implied in what follows).

Example 1. Let |0l #0, 03 #0, B!'=C'=0. Then conditions (21) hold
when u, =1, u,=0, g=0. By the formula (22) we obtain

23) Y(x, y)= [lol "' (c3dx—a}dy),
< %
where . is a piecewise smooth curve in R} x R} joining a point (x,, y,) to a point
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(x, y). The condition B'=C'=0 is necessary and sufficient for the pure
Wienerization of the process x, by means of the function y, with g,y =0.
Subsequently we regard x, as a one-dimensional diffusion process defined by

the Itd equation
(24) dx(t)=b'(x(t)) dt + o' (x(t)) dw,, x(0)=Xx,.

It is necessary to transform x, into the Wiener process 7, if v is a preassigned
function, or to transform x, into a pure Wiener process. These are the problems to

be solved in the sequel.

4. Effective methods of random Wienerization

Together with (24) we regard as defined the equation
(295) dy(t)=b3(x(t), y(t))dt+a*(x(t), y(t)dw,, W0)=y,,
with vector b and matrix ¢ continuously differentiable twice and three times

fspectively, beC(2), ceC(3), |a|l # 0.
et

dpo=(—1)*"Yo3¥C'—037*B?), g=consteR,
dpy=(—1D[a325(B' +CH)+(—1y " 'a? *(B*-C"),
A@s N=deo+(— 1@ y+03 /1= )g+dn 7 /1-7 +dia??,
eo=0,d10—0, dyo+ B¥B*—C')+ C*B'+C?),
e,= —(ai0;In|a|+2B*), k, r=1, 2,
e,=0,dy,—d, dzy +2(B'B2+C'C?),
ey =0, dya— 0, daz +(B') —(B?)? +(C')* —(C?)>.

Theorem 1. For the random mixed Wienerization of the diffusion process x,
without a change of time (v = 1) it is necessary and sufficient that for some q the

equation

(26) a2 +e37/1—7% +aleyy+e;/1-1)+eo+4*=0
has the solution yeC(2), |y|=1, J1—-9*€C(2),

27) ol dy=/1—72 A, ¥), k=1, 2.

Under this condition { is given by (22), with u,=y.

Proof. Starting from Corollary 2 we restrict the class of the functions ¥ by
functions which are linear in time. To prove the necessary, we assume here that
the vector u=(u,, u,) satisfies the system (21), |u|=1. With u, =y and taking into

account the equalities

uy= /1=9%, (6" 0,y w=[ck —p(1—y*)"*c410,7,
the set (21) may be presented as
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[of—v1—y*)"%%c4]0,y+Bu' +q=0,
(28)
[a5+n1—y*)"%% )0,y + Cu=0.
This system, after being solved with respect to the derivatives, takes the form (27).
The first equation in (27) is differentiated with respect to y, the second one — to x,
then the obtained results are subtracted term by term. After elementary
transformations we obtain

V1=v 24, V1@ V)—A,(q, V) 2(q V)]
+ Ial [az dl (q9 )')_al ‘dz(q’ 7)]=0'
Having classified the terms in the left-hand side of the equality according to the

degrees of q, y, /1 —y%, we obtain (26), with prime denoting differentiation with
respect to 7.

Sufficiency. Let Eq.(26) have the solution y (with the necessary properties)
satisfying the condition (27). Then (28) and (21) follow from (27). The only thing
remaining is to verify condition (A).

In what follows we write out vectors B, C in coordinatewise form

B=2lo| '(c3a'—0cia? —ocia'+o}ia?),
Cr=(—1)"Y0,65-x—0c%4_x0;In|a]), k=1, 2.
Example 2. Let |o| #0, |C| #0, i, k=1, 2,
a,(Cl ~*CH=9;[|C| ~*(B*C*—B*C")]=0.
Then x, may be transformed into a Wiener process with v=1, u, =const, |u, |<1,

u,= ./1—u}, if we construct ¥ according to the formula (22), with o, =/, =0,
k=1,2,

u=(—1}"1|C] 1C>7%, g=|C| ~}(B*C'—B'C?).
If for a # 0 we introduce

d,(a, b, c)=Qa) ' [—b+(—1)/b*>—4ac], k=1, 2,
then an important corollary is valid.

Corollary 2. The necessary and sufficient condition for the mixed random
Wienerization of the process x, with the help of the function Yy €C(2), 0,y =0 is the
validity of the ‘inequalities (assuming that e,, e3+e} # O):

(29) 0=<el—2e5e,<2(el+e}), 0<e3—4eo(eo+ey),
and the equality (27) for y=F \/d;; /d;, /1—d;e C(2), where d,=d(e}+e3,
2eq,e,—e3, e3). Under this cond?né;t th{}unction wi is found by (22), w;thsq =6,
ul=¢ di’ u2=:t\/l_d‘, i.e.
(30) ’ Y(z)= I (uoc~')dz.
K4

For a more complicated method of random Wienerization we introduce the
following notation:
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D(g, y)=e,y*+e37 1—72""1(917"'92\/ 1—y2)+eo+q2,}

(€2))
Bk(qa Y)=|a| aky— l_yzAk(qa Y)’ k=1; 2’
Ko=es—eo+2er ' eyey, A=Kq(e e, +e,e5)?
32) —(e}+e3)[Ko(el +2e,+e3)+2e5e, —e3 ] +2(e3 +€3),

K=(e2+e2) '[—/Ko(e e, +e,e3)F \/K],
y=0,5[K —(sing K) /K> —4].

Theorem 2. Suppose that (with e, #0, ej=e3+ei, A=0) the following
conditions are satisfied

2e0+2\/e—5—(e§+e§)§e§, 0,Ko=0, Bi(/Ko, 7)=0,

1 B .
(33) Ko=5le3—2e, F Jei+ e +ed+eyed)],
D(\/K,, 1)=0, |K|22, yeC(2).
Then a mixed Wienerization of the process x, is possible with q= /Ky, u, =1y,
v=1.

Proof. From (33) we established that K,=0, all the radical are non-negative
and the functions K, y are real Since with |K|>2 we have

ly|=0,5(IK|—y/K*—4) >0, K — oo,

201yl /01K|=1—|K|/(K*—4)"" <0,

then max |y| =1 (it is achieved when |K|=2). If we suppose that g= /K, then it is
easy to see that y is the real solution of the equation

(€3 +eiy*+2e e, +ezea)q)'3
+[g%(e3 +2e, +€3) +2eqe, —e3]7?
+2g(e e, +e,e5)y +(e3+e3)=0.

Moreover, ﬂ‘;(q. y)=0, D(q, y)=0, therefore, in virtue of Theorem1 ¥ may be

constructed by the formula (22) with u, =7. )
It should be noted that, if e, were equal to 0, then, with ¢;+e,<0 and

0,(ep+e,)=0, the following constant would satisfy Eq.(26): y=1, g= /e, +e,.

5. Important particular cases

Let within the adopted notation (with k=1, 2)
Ay=di(1, —ey, ), dif =di(1, 2e,—ei—e3. €f),

1@ =d, (3 +€3)q%, 2qe,(q* +eo). (a*+eo)*—(e2)*).
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Theorem 3. Let e;=e, =0, e} +e3 # 0. For the mixed random Wienerization
of the process x,, v=1, it is necessary and sufficient that for some k, r=1, 2

el —4e,20, el+e3—2e,20, 0,A,=0, i=1, 2,

(34 & s T
~ B(FA,, 7(FA,)=0, maxd} <A2<mind}.
Proof. It is important to note that under the given conditions Eq. (26) takes
the form o

(35)  (e3+eD)gPy?+2a> +eole, ay + (4% +€0)* —(e29)*1=0.
The discriminant of this equation is non-positive since y is a real function, i.e.
(36) . 4*+(2ep—ei—e3)q* +e5<0.

Since the roots of the quadratic trinomial with respect to g2 in the left-hand side
of this inequality are real, its discriminant is non-positive: e} +e3 —4e,=0. It
arises from e2 =0 that the roots of the trinomial in*(36) are not of different signs
and that g* lies between these roots: d; <q><d;. Therefore, both roots are
non-negative, hence, the factor of g? in (36) is non-positive and thus the second
inequality in (34) is proved. Moreover, both solution of y in Eq.(35) are real and
for some k we have y,e[—1, 1]. This means that the following inequality is valid

[ey a(a® +eo)— q*(€} +€3) 1% <(e,4%) [d*(e} + €3 ) —(eo +4°)*]
(37 <[qe,(q*+eo) +q*(ei +€3)12,
(‘12"‘13,{ +eo)2§0§(qz +qe, '*"eo)2

as well as the inequality inverse to it. It arises from (37) that g=A,, 9, A, =0, k=1,
2. The inequality inverse to (37) will give us g=d,(1, e,, ¢p), 1.e., in any case,
q*>=(A,)?, thus the last double inequality in (34) is proved. Moreover, d, and A,
are real and, therefore, the first inequality in (34) is also valid.

Sufficiency. If the conditions (34) are satisfied, then it follows from the
first inequality that A, is real and from 9, A,=0 that it is a constant. It arises from
the second inequality in (34) that d; are real non-negative functions, k=1, 2. If
g% =A? holds, then it follows from the last double inequality in (34) that with the
chosen value of g the inequality (36) is valid. That is why both solutions of y in
Eq.(35) are real. As both (37) and the inverse inequality are valid, by performing
the operations in an opposite order we establish that.y=y,(FA4,)e[—1, 1].

Finally we shall prove that y, with the corresponding sign before the square
root, satisfies Eq.(26), i.e. :

(38) G +(e,7+e,/1—9*)q+e,=0.

If g=A,=0, then in virtue of (37) ¢, =0, and therefore, the equality (26) is valid, it
is an identity. Then 7y is derived from the joint system (27), e.g., y=1 is a solution.
If A, #0, g +#0, we have (i, r=1, 2, i #7r):

r=7,a), V/1-7*

=d:(g'(e§+e%), e,(q>+e,), [(qz+eo)’-.—(qe1)’](24)"),
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1
> +q(e y+ey /1 —v’)+eo=-z—z{q’(e%+e§)
el +e2
—el(g®+eo)Fe ez[qz(ef+e§)—(q2+eo)2]°'5—e2 [ex(q®+eo)

Fe,[q%e}+e3)—(a*+e,)*1%° 1+ eq(ef +e%)} =0.

Thus Theorem 3 is proved completely.
For the analysis of another special case we introduce the notation (regarding

a and b as any real fixed numbers, a<b):
p=[—o0, o}, la,b[=p—Ia, b],
)a, b(=p—(a, b), Ja,b[ =p—(a,b],
la, b(=p—Ia, b), a, bep,

D = L{(= e, +(= 1Y e —heg+ 212,
D* =ixz1fD"’, B =s1:pD"’,
e=2[(e}—4e,) 'eoes]*%, ee =infe,
ess = supe, M,=[D?!, D?2]1n)D}!, D2(,

My=M,n[-e)®, e®], My=[D;, DJ10)DLY, DL(,
M,=M,n)—els, e’ (,
M5=Ml n)_eO.S e(‘)..S(’ ‘)’,(q)=d,(e4, qé,, q2+e0)!

s 7

ﬂkr(q)=ﬂk(q’ Yr)’
A'={e?—4e,20, e;e,=<0;

if e,>0, then M, is nonempty, if e, <0, then M, is nonempty; e] —4e,=4e,},
A2~ (4o, <e? 4o, <0, e, <0, M, s nonempty, A3>={e—de,>0, ege,>0; if
e, <0, then M, i nonempty and if e, >0, then M, is nonempty}, k, r=1,2.
Theorem 4. Let e,=e,=0, e, # 0. Suppose that only one of the conditions A',
i=1, 2, 3, holds as z varies in R% x R, . For the mixed random Wienerization of the
process x, by means of the function (22) it is necessary and sufficient that M, U M,
(for A') or M, (for A%) or M, U M (for A®) contains a point q such that for some
fixed r=1, 2 and for any k=1, 2 the equality B (q)=0 holds. But if e} —4e, <0,

eoe, >0, then Wienerization is impossible. ’

Proof. Supgose that condition A!, e,>0, holds. Then the discriminant of
the equation e, y%+ge, y+(¢q>+¢€,)=0 is non-positive, i.e. for g¢M; we have
A = g% (el —4e,)—4epe, 20.

Therefore, the solution y of this equation is a real function. From D?! <q<D??,
qe(D'', D?*?) we obtain the following double inequality:
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(38*%) q®+qe,+ey+eya<0=<q>—qe, +ey+e,.
Since
4el+4de e, q=< —de (q® +eo)<de (e, —e,9),
(e1q+2e,)* =(e,9)* —4e,(q* +eo)§(elq_2e4)2,
e,q—2e, < F[q*(el—de,)—deoe, 1% <e g +2e,,

we conclude that |y|<1. For e,<0, geM, the proof is the same with the
inequality inverse to (38*) being applied.
If condition A2 holds, then using (38*) for ge M, we obtain the relation

*se*=4e} —4e,)” leoe4s A20, lyl=1.
Both (38*) and the inequality inverse to it are identically used for condition A3.

6. Random pure Wienerization

Applying Lemma 2, we shall analyse now the case of Wienerization involving
a random change of time (not necessarily v=1). For the existence of y realizing
a pure random Wienerization by means of the function v it is necessary and
sufficient that v alongside with previous conditions satisfy one more set of
equations:

(39) 4In/v=(—10lo| o3 *B'—ai7*C'+ /v 1.q037Y),

where k=1, 2. The function ¥ is derived from the formula
(40) v, x, )= [(@/2)dt+lo| 7' /o(e3dx—a}dy).
&

The equality (39) is derived from the system
656,lnf—&{azlnf=626}—616},
610, ln\/t; +a§621n\/_ . —(qﬁ + B!),

which arises from the first two equalities in (20).

A very important problem is the following: find conditions on the sufficiently
smooth functions a and g, || # 0, such that there exist the functions veC(2) and
yeC(1, 2) realizing a pure Wienerization of the process x, involving the
above-mentioned. process y,. For partial solution let #° be a piecewise smooth
curve in R} x R} joining a fixed point (x,, y,) to a variable point (x,y), and
suppose that :

ex, y)= Iolal“[(chl—a%B‘)dva%B‘—diC‘)dy]
<z
is a bounded function, i=1, 2, I, =infl(z), I,=supl(z), &=exp(2]).

Theorem 5. For the pure random Wienerization of the process x, with the help
of certain functions v, Y, 9,y =0 it is necessary and sufficient that
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(41) 2:[lol ~'(0, C' —0, B')]1=0.
If this identity holds, then
(42) oz)=exp[2l2)], ¥(z)= Io lo| ! él(e 3dx—a 3 dy).
L4

Proof. The necessity is established from (39) with 4=0 if we differentiate the
first equality with respect to y, the second one with respect to x and equate the
obtained results. In order to prove the sufficiency we assume that with the
notation already adopted the condition (41) is satisfied. Then the integral /(z)
should not depend on the curve, and therefore, this function is single-valued real,

and so is 1(z) from (42), 0<¢, S z)<e,<o0. As it follows from 62(&'}\/1_))
=0d,(0} \/I—J), the curvilinear integral in the right-hand side of the second equality
(42) does not depend on the curve £°, i.e. it defines the function ¥(z)

nonuniquely. The conditions (20) for the vector u=(\/z_J, 0) are as follows:
43) 0% 8, /v+B' /v=0, 059, /v+C' /v=0.

Since \/v=exp(l), 9, \/z-;=exp(l) lo] (¢ C'—0o%B!), 8, /v =exp(]) |o| '(c} B!
—o} C'), we, substituting these expressions into (43), obtain identities.
From the second equality in (42) we obtain :

8,y =1/vlo| 163, 3,¥=—Jvlo|"'a}, @:¥)o=u.
Consequently the stochastic differential of ¥ (¢, x,, y,) is

oW (x,, y)=(22¥)odw,=/vdw}.

Moreover, if ¥ (x,, yo)=n(0)=0, then n(t)=1(z) is a Wiener process, Q.E.D.
Incidentally, in the case of pure Wienerization we can manage without the mixed
Wiener process w;" (cf. Lemma 2).

Example 3. Let R¥=Rj=R, ¢(x) be an absolutely integrable over
R continuous function satisfying the Lipschitz condition, and let

o (x)=(x— l)exp[itp(u)du], o3=1, ai(x)=x,
0
ol =exp[| pwdul, b*=0, xo=0, yo=0,
(V]

b (x)= —0,5p(x) { x*+exp[—2 | ou)dul}.
o

It is easy to prove that the system (24) - (25) uniquely, up to stochastic
equivalence [4], determines the diffusion process z(t)=(x(t), L) §uch that
P(ZTZ(O):(O, 0)’1= 1. Analysing the possibility of the pure Wienerization of the
diffusion process x(t) with the process y(t) involved, we apply TheoremS5. It is
necessary to find !, a2, etc., viz.

al= —0,5x[1+xp(x)], ©*=2"1(—x)ed™“[1+(x—1) (],
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lol=1, C' =2, 01 = —@(x)exp[— [ p(w)dul,
o

B'=2[a' —a?exp(— f(p(u) du)]= —x¢(x),
o

6lC'—6iB'=0, 62C'—0%B'=¢(x),

i.e. condition (41) is satisfied. All our previous assumptions hold as well, hence

I=100)= [ () du, oz)=exp[2] p(u)dul,
4] 0

W(x, y)= [explf pls)ds]du—y.
0 (4]

It is appropriate to mention here that 0,y >0 leads to the existence of
a function ¥, inverse to ¥ such that n=y(x, y) & x=y,(n, y). Consequently we
find the expression for the process x(t):
x(t)=y,(n(t), y(t)) where n(t)=w'(z) is the first component of the Wiener
process w(t).

Also it is interesting to note that for another pure Wienerization, i.e. when
u, =0, u,=1 with 9,y =0, v=1, it is necessary and sufficient that B>=C?=0.

7. Method of finding the inverse function

For applying the method of transformation of the diffusion process x, one
must very often know not only ¥ but also its inverse function ¥, (¢, n, y) such that
for any fixed t, y from J and R% respectively and neR, xeRi we have

(44) ’7='p(ta "ll(t’ n, .V), ,V), x=¢1(t, 'I’(ta X, y)’ y)'

On the other hand this function §, can be found by inverting . But it is possible
to derive a special system of differential equations for ¥, and to find it without
knowing ¥. Let us consider some details of the problem, assuming that v = 1.

Suppose that 7, is a one-dimensional Wiener process such that x,=y,(t, n,, y,).
Assuming that y,eC(1, 2),

1 .
)2 +u,)’=1, &*=—= I o0y,
‘ ) 15ks2
with a!, a? already found, we obtain the system of equation
(45) Oy, +a20 Y, +ad, ¥, =a', 620, ¥, +ud¥,=0i, k=1, 2.

It is important to note that this system is consistent if and only if the consistency
conditions for the system (10) are satisfied. Thus, in the case of pure Wienerization
we have n(t)=w'(t), u,=1, u,=0, a®>=0. With o3|o| #0, 0,§, =0 we obtain
from (45)

(46) d,¥,=(03)""0}, 0;¢,=(03)""lol,

where d,=0/0n. Let d,, d, be the complete partial derivatives vectors with respect
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to y and 7 respectively, then the consistency condition for. the system (45) takes the
form

(47) d,[(63) 'e1]=d,[(63) " lol], cia=0ia’.

Since d,=(0,¥,)d,, d,=0,+(0,¥,)d,, this condition (47) after transformations
can easily be reduced to the form B! =C!=0. If this is observed, then by (46) we
find the function ¥, (1, y) such that the diffusion process x(t) is expressed in terms
of the Wiener process w!(t) by the formula .

(48) x(O) =y, (W' (), M)

The above problem is just another way of presenting Example 1. Identically,
all the previous results concerning the function § can be formulated with reference
to y,.
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